Pyramidal Neurons Are Not Generalizable Building Blocks of Cortical Networks

A key challenge in cortical neuroscience is to gain a comprehensive understanding of how pyramidal neuron heterogeneity across different areas and species underlies the functional specialization of individual neurons, networks, and areas. Comparative studies have been important in this endeavor, providing data relevant to the question of which of the many inherent properties of individual pyramidal neurons are necessary and sufficient for species-specific network and areal function. In this mini review, the importance of pyramidal neuron structural properties for signaling are outlined, followed by a summary of our recent work comparing the structural features of mouse (C57/BL6 strain) and rhesus monkey layer 3 (L3) pyramidal neurons in primary visual and frontal association cortices and their implications for neuronal and areal function. Based on these and other published data, L3 pyramidal neurons plausibly might be considered broadly “generalizable” from one area to another in the mouse neocortex due to their many similarities, but major differences in the properties of these neurons in diverse areas in the rhesus monkey neocortex rules this out in the primate. Further, fundamental differences in the dendritic topology of mouse and rhesus monkey pyramidal neurons highlight the implausibility of straightforward scaling and/or extrapolation from mouse to primate neurons and cortical networks.

[1]  M. Medalla,et al.  Comparative ultrastructural features of excitatory synapses in the visual and frontal cortices of the adult mouse and monkey , 2017, The Journal of comparative neurology.

[2]  Jennifer I Luebke,et al.  Area‐Specific Features of Pyramidal Neurons—a Comparative Study in Mouse and Rhesus Monkey , 2016, Cerebral cortex.

[3]  J. Burrone,et al.  Homeostatic Plasticity of Subcellular Neuronal Structures: From Inputs to Outputs , 2016, Trends in Neurosciences.

[4]  Idan Segev,et al.  Comments and General Discussion on “The Anatomical Problem Posed by Brain Complexity and Size: A Potential Solution” , 2016, Front. Neuroanat..

[5]  F. Karube,et al.  The Diversity of Cortical Inhibitory Synapses , 2016, Front. Neural Circuits.

[6]  K. Kupferschmidt NEUROSCIENCE. Virtual rat brain fails to impress its critics. , 2015, Science.

[7]  James G. King,et al.  Reconstruction and Simulation of Neocortical Microcircuitry , 2015, Cell.

[8]  Guy Eyal,et al.  Dendritic and Axonal Architecture of Individual Pyramidal Neurons across Layers of Adult Human Neocortex , 2015, Cerebral cortex.

[9]  Javier DeFelipe,et al.  The anatomical problem posed by brain complexity and size: a potential solution , 2015, Front. Neuroanat..

[10]  R. Yuste From the neuron doctrine to neural networks , 2015, Nature Reviews Neuroscience.

[11]  H. Barbas General cortical and special prefrontal connections: principles from structure to function. , 2015, Annual review of neuroscience.

[12]  Satoru Kondo,et al.  Functional effects of distinct innervation styles of pyramidal cells by fast spiking cortical interneurons , 2015, eLife.

[13]  Christina M. Weaver,et al.  Age-related changes to layer 3 pyramidal cells in the rhesus monkey visual cortex. , 2015, Cerebral cortex.

[14]  Jennifer I Luebke,et al.  Diversity of Glutamatergic Synaptic Strength in Lateral Prefrontal versus Primary Visual Cortices in the Rhesus Monkey , 2015, The Journal of Neuroscience.

[15]  J. Fuster Chapter 2 – Anatomy of the Prefrontal Cortex , 2015 .

[16]  Hans-Christian Hege,et al.  Generation of dense statistical connectomes from sparse morphological data , 2014, Front. Neuroanat..

[17]  Ichiro Fujita,et al.  Pyramidal cell development: postnatal spinogenesis, dendritic growth, axon growth, and electrophysiology , 2014, Front. Neuroanat..

[18]  O. Sporns Contributions and challenges for network models in cognitive neuroscience , 2014, Nature Neuroscience.

[19]  Paul Manger,et al.  Pyramidal cells in V1 of African rodents are bigger, more branched and more spiny than those in primates , 2013, Front. Neuroanat..

[20]  Giorgio A Ascoli,et al.  Functional Impact of Dendritic Branch-Point Morphology , 2013, The Journal of Neuroscience.

[21]  Patrick R Hof,et al.  Influence of Highly Distinctive Structural Properties on the Excitability of Pyramidal Neurons in Monkey Visual and Prefrontal Cortices , 2012, The Journal of Neuroscience.

[22]  D. Lewis,et al.  Electrophysiological classes of layer 2/3 pyramidal cells in monkey prefrontal cortex. , 2012, Journal of neurophysiology.

[23]  Z. Nusser Differential subcellular distribution of ion channels and the diversity of neuronal function , 2012, Current Opinion in Neurobiology.

[24]  Samuel S.-H. Wang,et al.  Evolution and scaling of dendrites , 2012 .

[25]  Javier DeFelipe,et al.  The Evolution of the Brain, the Human Nature of Cortical Circuits, and Intellectual Creativity , 2011, Front. Neuroanat..

[26]  Harry B. M. Uylings,et al.  Cytoarchitectonic and chemoarchitectonic characterization of the prefrontal cortical areas in the mouse , 2010, Brain Structure and Function.

[27]  Nicolas Brunel,et al.  Sensory neural codes using multiplexed temporal scales , 2010, Trends in Neurosciences.

[28]  Helen Barbas,et al.  Effects of normal aging on prefrontal area 46 in the rhesus monkey , 2010, Brain Research Reviews.

[29]  廣瀬雄一,et al.  Neuroscience , 2019, Workplace Attachments.

[30]  A. Polsky,et al.  Synaptic Integration in Tuft Dendrites of Layer 5 Pyramidal Neurons: A New Unifying Principle , 2009, Science.

[31]  Dmitri B Chklovskii,et al.  Maximization of the connectivity repertoire as a statistical principle governing the shapes of dendritic arbors , 2009, Proceedings of the National Academy of Sciences.

[32]  Steven P. Wise,et al.  Forward frontal fields: phylogeny and fundamental function , 2008, Trends in Neurosciences.

[33]  J. Bourne,et al.  Balancing structure and function at hippocampal dendritic spines. , 2008, Annual review of neuroscience.

[34]  D. Johnston,et al.  Active dendrites: colorful wings of the mysterious butterflies , 2008, Trends in Neurosciences.

[35]  P. J. Sjöström,et al.  Dendritic excitability and synaptic plasticity. , 2008, Physiological reviews.

[36]  Judit K. Makara,et al.  Compartmentalized dendritic plasticity and input feature storage in neurons , 2008, Nature.

[37]  N. Spruston Pyramidal neurons: dendritic structure and synaptic integration , 2008, Nature Reviews Neuroscience.

[38]  R. Douglas,et al.  Mapping the Matrix: The Ways of Neocortex , 2007, Neuron.

[39]  M. Häusser,et al.  Targeted dendrotomy reveals active and passive contributions of the dendritic tree to synaptic integration and neuronal output , 2007, Proceedings of the National Academy of Sciences.

[40]  R. Douglas,et al.  Recurrent neuronal circuits in the neocortex , 2007, Current Biology.

[41]  B. Kolb Do All Mammals Have a Prefrontal Cortex , 2007 .

[42]  G. Elston Specialization of the Neocortical Pyramidal Cell during Primate Evolution , 2007 .

[43]  J. DeFelipe,et al.  Density and morphology of dendritic spines in mouse neocortex , 2006, Neuroscience.

[44]  Helen Barbas,et al.  Synaptic distinction of laminar-specific prefrontal-temporal pathways in primates. , 2006, Cerebral cortex.

[45]  J. Magee,et al.  Integrative Properties of Radial Oblique Dendrites in Hippocampal CA1 Pyramidal Neurons , 2006, Neuron.

[46]  L. Abbott,et al.  Neural network dynamics. , 2005, Annual review of neuroscience.

[47]  G. N. Elston,et al.  Fractal Analysis as a Tool for Studying Specialization in Neuronal Structure: the Study of the Evolution of the primate Cerebral Cortex and Human Intellect , 2005, Adv. Complex Syst..

[48]  Daniel Johnston,et al.  Plasticity of dendritic function , 2005, Current Opinion in Neurobiology.

[49]  W. Gan,et al.  Development of Long-Term Dendritic Spine Stability in Diverse Regions of Cerebral Cortex , 2005, Neuron.

[50]  William J Tyler,et al.  Synaptic vesicle recycling studied in transgenic mice expressing synaptopHluorin , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Bert Sakmann,et al.  Backpropagating action potentials in neurones: measurement, mechanisms and potential functions. , 2005, Progress in biophysics and molecular biology.

[52]  M. London,et al.  Dendritic computation. , 2005, Annual review of neuroscience.

[53]  Christos Constantinidis,et al.  A Neural Circuit Basis for Spatial Working Memory , 2004, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[54]  Bruno A Olshausen,et al.  Sparse coding of sensory inputs , 2004, Current Opinion in Neurobiology.

[55]  Mriganka Sur,et al.  Local networks in visual cortex and their influence on neuronal responses and dynamics , 2004, Journal of Physiology-Paris.

[56]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.

[57]  B. Kolb,et al.  Do rats have a prefrontal cortex? , 2003, Behavioural Brain Research.

[58]  G. Elston Cortex, cognition and the cell: new insights into the pyramidal neuron and prefrontal function. , 2003, Cerebral cortex.

[59]  H. Kasai,et al.  Structure–stability–function relationships of dendritic spines , 2003, Trends in Neurosciences.

[60]  Giorgio A. Ascoli,et al.  Passive dendritic integration heavily affects spiking dynamics of recurrent networks , 2003, Neural Networks.

[61]  Stuart D. Washington,et al.  Effects of dendritic morphology on CA3 pyramidal cell electrophysiology: a simulation study , 2002, Brain Research.

[62]  Bob Jacobs,et al.  Regional Dendritic Variation in Primate Cortical Pyramidal Cells , 2002 .

[63]  G. Shepherd,et al.  Emerging rules for the distributions of active dendritic conductances , 2002, Nature Reviews Neuroscience.

[64]  Guy N Elston,et al.  Cortical heterogeneity: Implications for visual processing and polysensory integration , 2002, Journal of neurocytology.

[65]  J. DeFelipe,et al.  Microstructure of the neocortex: Comparative aspects , 2002, Journal of neurocytology.

[66]  K. Svoboda,et al.  Structure and function of dendritic spines. , 2002, Annual review of physiology.

[67]  Javier DeFelipe,et al.  Spine distribution in cortical pyramidal cells: a common organizational principle across species. , 2002, Progress in brain research.

[68]  T. Schikorski,et al.  Inactivity Produces Increases in Neurotransmitter Release and Synapse Size , 2001, Neuron.

[69]  G. Elston,et al.  The Pyramidal Cell in Cognition: A Comparative Study in Human and Monkey , 2001, The Journal of Neuroscience.

[70]  Thomas Euler,et al.  Dendritic processing , 2001, Current Opinion in Neurobiology.

[71]  B. Sakmann,et al.  Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons , 2001, The Journal of physiology.

[72]  E. Miller,et al.  An integrative theory of prefrontal cortex function. , 2001, Annual review of neuroscience.

[73]  M. Häusser,et al.  Propagation of action potentials in dendrites depends on dendritic morphology. , 2001, Journal of neurophysiology.

[74]  松崎 政紀 Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons , 2001 .

[75]  Christof Koch,et al.  The role of single neurons in information processing , 2000, Nature Neuroscience.

[76]  I Segev,et al.  Untangling dendrites with quantitative models. , 2000, Science.

[77]  G. Elston Pyramidal Cells of the Frontal Lobe: All the More Spinous to Think With , 2000, The Journal of Neuroscience.

[78]  G. Shepherd,et al.  The Millennium of the Dendrite? , 2000, Neuron.

[79]  R. Nicoll,et al.  Synaptic plasticity and dynamic modulation of the postsynaptic membrane , 2000, Nature Neuroscience.

[80]  K. Svoboda,et al.  Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo , 2000, Nature.

[81]  Peter Somogyi,et al.  Cell Type and Pathway Dependence of Synaptic AMPA Receptor Number and Variability in the Hippocampus , 1998, Neuron.

[82]  G. Elston,et al.  The occipitoparietal pathway of the macaque monkey: comparison of pyramidal cell morphology in layer III of functionally related cortical visual areas. , 1997, Cerebral cortex.

[83]  J. Fuster The Prefrontal Cortex , 1997 .

[84]  T. Sejnowski,et al.  Heterogeneous Release Properties of Visualized Individual Hippocampal Synapses , 1997, Neuron.

[85]  N. Spruston,et al.  Action potential initiation and backpropagation in neurons of the mammalian CNS , 1997, Trends in Neurosciences.

[86]  A. Pestronk Histology of the Nervous System of Man and Vertebrates , 1997, Neurology.

[87]  T. Sejnowski,et al.  [Letters to nature] , 1996, Nature.

[88]  P. Somogyi,et al.  High-resolution immunogold localization of AMPA type glutamate receptor subunits at synaptic and non-synaptic sites in rat hippocampus , 1995, Neuroscience.

[89]  T. Preuss Do Rats Have Prefrontal Cortex? The Rose-Woolsey-Akert Program Reconsidered , 1995, Journal of Cognitive Neuroscience.

[90]  Gang Tong,et al.  Multivesicular release from excitatory synapses of cultured hippocampal neurons , 1994, Neuron.

[91]  H. Markowitsch,et al.  Prefrontal cortex of the mouse defined as cortical projection area of the thalamic mediodorsal nucleus. , 1981, Brain, behavior and evolution.

[92]  Wilfrid Rall,et al.  Theoretical significance of dendritic trees for neuronal input-output relations , 1964 .

[93]  W. Rall Theory of Physiological Properties of Dendrites , 1962, Annals of the New York Academy of Sciences.

[94]  J. L. Conel The cortex of the one-month infant , 1941 .