Influence of Interfacial Mixing on Thermal Boundary Conductance Across a Chromium/Silicon Interface

The thermal conductance at solid-solid interfaces is becoming increasingly important in thermal considerations dealing with devices on nanometer length scales. Specifically, interdiffusion or mixing around the interface, which is generally ignored, must be taken into account when the characteristic lengths of the devices are on the order of the thickness of this mixing region. To study the effect of this interfacial mixing on thermal conductance, a series of Cr films is grown on Si substrates subject to various deposition conditions to control the growth around the Cr/Si boundary. The Cr/Si interfaces are characterized with Auger electron spectroscopy. The thermal boundary conductance (h BD ) is measured with the transient thermoreflectance technique. Values of h BD are found to vary with both the thickness of the mixing region and the rate of compositional change in the mixing region. The effects of the varying mixing regions in each sample on h BD are discussed, and the results are compared to the diffuse mismatch model (DMM) and the virtual crystal DMM (VCDMM), which takes into account the effects of a two-phase region of finite thickness around the interface on h BD . An excellent agreement is shown between the measured h BD and that predicted by the VCDMM for a change in thickness of the two-phase region around the interface.

[1]  Kosevich Fluctuation subharmonic and multiharmonic phonon transmission and Kapitza conductance between crystals with very different vibrational spectra. , 1995, Physical review. B, Condensed matter.

[2]  R. Pohl,et al.  Thermal boundary resistance , 1989 .

[3]  Thin film metallization of oxides in microelectronics , 1973 .

[4]  Gang Chen,et al.  Partially coherent phonon heat conduction in superlattices , 2003 .

[5]  Frank P. Incropera,et al.  Fundamentals of Heat and Mass Transfer , 1981 .

[6]  D. Kechrakos The role of interface disorder in the thermal boundary conductivity between two crystals , 1991 .

[7]  A. Smith,et al.  Signal analysis and characterization of experimental setup for the transient thermoreflectance technique , 2006 .

[8]  Patrick E. Phelan,et al.  Application of Diffuse Mismatch Theory to the Prediction of Thermal Boundary Resistance in Thin-Film High-Tc Superconductors , 1996, Microelectromechanical Systems (MEMS).

[9]  K. L. Chopra,et al.  Thin Film Phenomena , 1969 .

[10]  Gang Chen,et al.  Thermal Conductivity and Heat Transfer in Superlattices , 1997 .

[11]  C. L. Tien,et al.  Thermal diffusivity measurement of GaAs/AlGaAs thin-film structures , 1994 .

[12]  M. Maeda,et al.  [Heat conduction]. , 1972, Kango kyoshitsu. [Nursing classroom].

[13]  G. Zeng NONEQUILIBRIUM PHONON AND ELECTRON TRANSPORT IN HETEROSTRUCTURES AND SUPERLATTICES , 2001, Proceeding of Heat Transfer and Transport Phenomena in Microscale.

[14]  D. Cahill,et al.  Thermal conductance of epitaxial interfaces , 2003 .

[15]  A. Peacock,et al.  SCATTERING-MEDIATED TRANSMISSION AND REFLECTION OF HIGH-FREQUENCY PHONONS AT A NONIDEAL SOLID-SOLID INTERFACE , 1998 .

[16]  N. Snyder,et al.  HEAT TRANSPORT THROUGH HELIUM II: KAPITZA CONDUCTANCE. , 1970 .

[17]  A. Smith,et al.  Measurement of Thermal Boundary Conductance of a Series of Metal-Dielectric Interfaces by the Transient Thermoreflectance Technique , 2005 .

[18]  M. Cardona,et al.  THERMAL-CONDUCTIVITY MEASUREMENTS OF GAAS/ALAS SUPERLATTICES USING A PICOSECOND OPTICAL PUMP-AND-PROBE TECHNIQUE , 1999 .

[19]  Gang Chen,et al.  Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices , 1998 .

[20]  P. Hopkins,et al.  Effects of Joint Vibrational States on Thermal Boundary Conductance , 2007 .

[21]  D. Kechrakos The phonon boundary scattering cross section at disordered crystalline interfaces: a simple model , 1990 .

[22]  D. E. Gray,et al.  American Institute of Physics Handbook , 1957 .

[23]  Luciana W. da Silva,et al.  Micro-thermoelectric cooler: interfacial effects on thermal and electrical transport , 2004 .

[24]  B. C. Daly,et al.  Molecular dynamics calculation of the thermal conductivity of superlattices , 2002 .

[25]  L. Zhigilei,et al.  Effects of temperature and disorder on thermal boundary conductance at solid-solid interfaces: Nonequilibrium molecular dynamics simulations , 2007 .

[26]  P. L. Kapitza,et al.  THE STUDY OF HEAT TRANSFER IN HELIUM II , 1971 .

[27]  R. O. Pohl,et al.  Thermal resistance at interfaces , 1987 .

[28]  D. Cahill,et al.  Thermal conductance of interfaces between highly dissimilar materials , 2006 .

[29]  Patrick E. Phelan,et al.  A Scattering-Mediated Acoustic Mismatch Model for the Prediction of Thermal Boundary Resistance , 2001 .

[30]  H. Maris,et al.  Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K. , 1993, Physical review. B, Condensed matter.

[31]  Wei Cheng,et al.  Lattice dynamics investigations of phonon thermal conductivity of Si∕Ge superlattices with rough interfaces , 2006 .

[32]  Mahan,et al.  Theory of the thermal boundary resistance between dissimilar lattices. , 1990, Physical review. B, Condensed matter.

[33]  G. Mahan,et al.  Multilayer thermionic refrigeration , 1998, Eighteenth International Conference on Thermoelectrics. Proceedings, ICT'99 (Cat. No.99TH8407).

[34]  J. Güdde,et al.  Electron and lattice dynamics following optical excitation of metals , 2000 .

[35]  B. Abeles Lattice Thermal Conductivity of Disordered Semiconductor Alloys at High Temperatures , 1963 .

[36]  T. Beechem,et al.  Role of interface disorder on thermal boundary conductance using a virtual crystal approach , 2007 .

[37]  S. M. Lee,et al.  Thermal boundary resistance at Ge2Sb2Te5/ZnS:SiO2 interface , 2000 .

[38]  Gang Chen,et al.  Thermal conductivity modeling of periodic two-dimensional nanocomposites , 2004 .

[39]  C. L. Tien,et al.  Femtosecond laser heating of multi-layer metals—I. Analysis , 1994 .

[40]  T. Qiu,et al.  FEMTOSECOND LASER HEATING OF MULTI-LAYER METALS. II: EXPERIMENTS , 1994 .

[41]  Seungmin Lee,et al.  Interface thermal conductance and the thermal conductivity of multilayer thin films , 2000 .

[42]  Taofang Zeng,et al.  Phonon heat conduction in thin films : Impacts of thermal boundary resistance and internal heat generation , 2001 .

[43]  A. Majumdar,et al.  Nanoscale thermal transport , 2003, Journal of Applied Physics.

[44]  J. H. Weaver,et al.  Structural morphology and electronic properties of the Si-Cr interface , 1982 .

[45]  James W. Mayer,et al.  Growth Kinetics Observed in the Formation of Metal Silicides on Silicon , 1972 .

[46]  Humphrey J. Maris,et al.  Improved apparatus for picosecond pump‐and‐probe optical measurements , 1996 .

[47]  Deyu Li,et al.  Molecular dynamics study of the lattice thermal conductivity of Kr/Ar superlattice nanowires , 2004 .

[48]  A. Majumdar,et al.  Role of electron–phonon coupling in thermal conductance of metal–nonmetal interfaces , 2004 .

[49]  Patrick E. Hopkins,et al.  Influence of Inelastic Scattering at Metal-Dielectric Interfaces , 2008 .

[50]  A. N. Smith,et al.  Measurement of the electron-phonon coupling factor dependence on film thickness and grain size in Au, Cr, and Al. , 1999, Applied optics.