Dark sector spectroscopy at the ILC

Recent studies have shown that searches in the mono-photon and missing energy final state can be used to discover dark matter candidates at the ILC. While an excess in this final state over the Standard Model background would indicate the existence of a dark sector, no detailed information about the internal structure of this sector can be inferred. Here, we demonstrate how just a few observables can discriminate between various realisations of dark sectors, including e.g. the spin of mediators.

[1]  B. Holdom Two U(1)'s and Epsilon Charge Shifts , 1986 .

[2]  R. Cowsik Comment on M. Aguilar et. al. AMS Collaboration, Phys. Rev. Lett. 100, 141102 (2013) , 2013 .

[3]  X. He,et al.  Comment on Z-Z' mixing in extended gauge theories , 1991 .

[4]  Hai-Bo Yu,et al.  Constraints on Light Majorana dark Matter from Colliders , 2010, 1005.1286.

[5]  Patrick J. Fox,et al.  Missing Energy Signatures of Dark Matter at the LHC , 2011, 1109.4398.

[6]  Herbert Dreiner,et al.  Illuminating dark matter at the ILC , 2012, 1211.2254.

[7]  A. Ringwald,et al.  Kinetic Mixing of the Photon with Hidden U(1)s in String Phenomenology , 2008, 0803.1449.

[8]  T. Junk Confidence Level Computation for Combining Searches with Small Statistics , 1999, hep-ex/9902006.

[9]  David E. Kaplan,et al.  Asymmetric Dark Matter , 2009, 0901.4117.

[10]  P. Fox,et al.  Leptophilic dark matter , 2008, 0811.0399.

[11]  D. Zeppenfeld,et al.  Azimuthal angle correlations for Higgs boson plus multi-jet events , 2010, 1001.3822.

[12]  G. C. Barbarino,et al.  Observation of an anomalous positron abundance in the cosmic radiation , 2008, 0810.4995.

[13]  Patrick J. Fox,et al.  The Tevatron at the frontier of dark matter direct detection , 2010, 1005.3797.

[14]  F. Takahashi,et al.  Cosmic rays from leptonic dark matter , 2008, 0810.4110.

[15]  Dark matter at colliders: A Model independent approach , 2004, hep-ph/0403004.

[16]  M. Strassler,et al.  Echoes of a hidden valley at hadron colliders , 2006, hep-ph/0604261.

[17]  Edward W. Kolb,et al.  Maverick dark matter at colliders , 2010, 1002.4137.

[18]  Higgs plus two jet production via gluon fusion as a signal at the CERN LHC , 2007, hep-ph/0703202.

[19]  M. Kadastik,et al.  Addendum including AMS 2013 data to “Model-independent implications of the e±, p¯ cosmic ray spectra on properties of Dark Matter” [Nucl. Phys. B 813 (1–2) (2009) 1–21] , 2013 .

[20]  N. Arkani-Hamed,et al.  LHC Signals for a SuperUnified Theory of Dark Matter , 2008, 0810.0714.

[21]  C. DeTar,et al.  Regge theory for multiparticle amplitudes , 1974 .

[22]  D. Zeppenfeld,et al.  Observing an invisible Higgs boson , 2000 .

[23]  K. Freese,et al.  XENON10/100 dark matter constraints in comparison with CoGeNT and DAMA: Examining the L eff dependence , 2010, 1006.0972.

[24]  Maria Beltran,et al.  Deducing the nature of dark matter from direct and indirect detection experiments in the absence of collider signatures of new physics , 2008, 0808.3384.

[25]  T. Tait,et al.  LHC bounds on interactions of dark matter , 2011, 1108.1196.

[26]  P. Fox,et al.  LEP Shines Light on Dark Matter , 2011, 1103.0240.

[27]  G. C. Barbarino,et al.  An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV , 2009, Nature.

[28]  T. Regge Introduction to complex orbital momenta , 1959 .

[29]  M. Simon,et al.  PAMELA: A payload for antimatter matter exploration and light-nuclei astrophysics - status and first results , 2006, IEEE Nuclear Science Symposium Conference Record.