Maxwell-Stefan-theory-based lattice Boltzmann model for diffusion in multicomponent mixtures.

The phenomena of diffusion in multicomponent (more than two components) mixtures are universal in both science and engineering, and from the mathematical point of view, they are usually described by the Maxwell-Stefan (MS)-theory-based diffusion equations where the molar average velocity is assumed to be zero. In this paper, we propose a multiple-relaxation-time lattice Boltzmann (LB) model for the mass diffusion in multicomponent mixtures and also perform a Chapman-Enskog analysis to show that the MS continuum equations can be correctly recovered from the developed LB model. In addition, considering the fact that the MS-theory-based diffusion equations are just a diffusion type of partial differential equations, we can also adopt much simpler lattice structures to reduce the computational cost of present LB model. We then conduct some simulations to test this model and find that the results are in good agreement with the previous work. Besides, the reverse diffusion, osmotic diffusion, and diffusion barrier phenomena are also captured. Finally, compared to the kinetic-theory-based LB models for multicomponent gas diffusion, the present model does not include any complicated interpolations, and its collision process can still be implemented locally. Therefore, the advantages of single-component LB method can also be preserved in present LB model.

[1]  V. S. Vaidhyanathan,et al.  Transport phenomena , 2005, Experientia.

[2]  Cass T. Miller,et al.  An evaluation of lattice Boltzmann schemes for porous medium flow simulation , 2006 .

[3]  Bastien Chopard,et al.  A lattice Boltzmann model for coupled diffusion , 2010, J. Comput. Phys..

[4]  Zhenhua Chai,et al.  A pseudopotential-based multiple-relaxation-time lattice Boltzmann model for multicomponent/multiphase flows , 2012 .

[5]  K. Boulouchos,et al.  Simulation of binary mixtures with the lattice Boltzman method. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  A. Xu Finite-difference lattice-Boltzmann methods for binary fluids. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  L. Luo,et al.  Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation , 1997 .

[8]  T. Veltzke,et al.  Multicomponent gas diffusion in nonuniform tubes , 2015 .

[9]  Zhenhua Chai,et al.  Nonequilibrium scheme for computing the flux of the convection-diffusion equation in the framework of the lattice Boltzmann method. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Zhenhua Chai,et al.  A comparative study of local and nonlocal Allen-Cahn equations with mass conservation , 2018, International Journal of Heat and Mass Transfer.

[11]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[12]  Cheng Bao,et al.  Macroscopic modeling of solid oxide fuel cell (SOFC) and model-based control of SOFC and gas turbine hybrid system , 2018 .

[13]  Xi-yun Lu,et al.  Multiphase Lattice Boltzmann Methods: Theory and Application: Huang/Multiphase Lattice Boltzmann Methods: Theory and Application , 2015 .

[14]  Hiroaki Yoshida,et al.  Multiple-relaxation-time lattice Boltzmann model for the convection and anisotropic diffusion equation , 2010, J. Comput. Phys..

[15]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[16]  Xi-yun Lu,et al.  Multiphase Lattice Boltzmann Methods: Theory and Application , 2015 .

[17]  Rajamani Krishna,et al.  Mass Transfer in Multicomponent Mixtures , 2006 .

[18]  J. Geiser Iterative solvers for the Maxwell–Stefan diffusion equations: Methods and applications in plasma and particle transport , 2015 .

[19]  R. Krishna,et al.  The Maxwell-Stefan approach to mass transfer , 1997 .

[20]  Pietro Asinari,et al.  A consistent lattice Boltzmann equation with baroclinic coupling for mixtures , 2008, J. Comput. Phys..

[21]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[22]  Sandip Mazumder,et al.  Critical assessment of the stability and convergence of the equations of multi-component diffusion , 2006, J. Comput. Phys..

[23]  S. H. Kim,et al.  Reconstruction and Effective Transport Properties of the Catalyst Layer in PEM Fuel Cells , 2009 .

[24]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[25]  J. Maxwell,et al.  The Dynamical Theory of Gases , 1905, Nature.

[26]  H. L. Toor,et al.  Unsteady diffusion in ternary gas mixtures , 1967 .

[27]  T. Zhao,et al.  Lattice Boltzmann modeling of transport phenomena in fuel cells and flow batteries , 2017, Acta Mechanica Sinica.

[28]  Xiaowen Shan,et al.  Multicomponent lattice-Boltzmann model with interparticle interaction , 1995, comp-gas/9503001.

[29]  Dario Götz,et al.  DIFFUSION MODELS OF MULTICOMPONENT MIXTURES IN THE LUNG , 2010 .

[30]  Dieter Bothe,et al.  On the Maxwell-Stefan Approach to Multicomponent Diffusion , 2010, 1007.1775.

[31]  G. Doolen,et al.  Diffusion in a multicomponent lattice Boltzmann equation model. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[32]  Zhenhua Chai,et al.  Discrete effect on the halfway bounce-back boundary condition of multiple-relaxation-time lattice Boltzmann model for convection-diffusion equations. , 2016, Physical review. E.

[33]  D. Dandy,et al.  A numerical stable method for integration of the multicomponent species diffusion equations , 2001 .

[34]  Zhaoli Guo,et al.  Finite-difference-based lattice Boltzmann model for dense binary mixtures. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  C. Shu,et al.  Lattice Boltzmann Method and Its Applications in Engineering , 2013 .

[36]  Zi-Xiang Tong,et al.  A multi-component lattice Boltzmann method in consistent with Stefan-Maxwell equations: Derivation, validation and application in porous medium , 2014 .

[37]  Zhaoli Guo,et al.  Localized lattice Boltzmann equation model for simulating miscible viscous displacement in porous media , 2016 .

[38]  Y. Pomeau,et al.  Lattice-gas automata for the Navier-Stokes equation. , 1986, Physical review letters.

[39]  Z. Chai,et al.  A comparative study on the lattice Boltzmann models for predicting effective diffusivity of porous media , 2016 .

[40]  P. Asinari Semi-implicit-linearized multiple-relaxation-time formulation of lattice Boltzmann schemes for mixture modeling. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  P. Lallemand,et al.  Theory of the lattice boltzmann method: dispersion, dissipation, isotropy, galilean invariance, and stability , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[42]  Baochang Shi,et al.  Lattice Boltzmann model for nonlinear convection-diffusion equations. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  A. Fick V. On liquid diffusion , 1855 .

[44]  A. Fick On liquid diffusion , 1995 .

[45]  Francesco Salvarani,et al.  A mathematical and numerical analysis of the Maxwell-Stefan diffusion equations , 2012 .

[46]  D. d'Humières,et al.  Two-relaxation-time Lattice Boltzmann scheme: About parametrization, velocity, pressure and mixed boundary conditions , 2008 .

[47]  Renwei Mei,et al.  Multiple-relaxation-time lattice Boltzmann model for the axisymmetric convection diffusion equation , 2013 .

[48]  H. L. Toor Diffusion in three‐component gas mixtures , 1957 .

[49]  Y. Qian,et al.  Lattice BGK Models for Navier-Stokes Equation , 1992 .

[50]  H. L. Toor,et al.  An experimental study of three component gas diffusion , 1962 .

[51]  J. Westwater,et al.  The Mathematics of Diffusion. , 1957 .

[52]  J. Abraham,et al.  Lattice Boltzmann methods for binary mixtures with different molecular weights. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  K. Luo,et al.  Lattice Boltzmann methods for multiphase flow and phase-change heat transfer , 2015, 1508.00940.

[54]  Yan Peng,et al.  Numerics of the lattice Boltzmann method: effects of collision models on the lattice Boltzmann simulations. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[55]  Yves Bourgault,et al.  Mixed finite element methods for addressing multi-species diffusion using the Maxwell–Stefan equations , 2014 .

[56]  Ankan Kumar,et al.  Coupled solution of the species conservation equations using unstructured finite‐volume method , 2010 .

[57]  남동석,et al.  III , 1751, Olav Audunssøn.

[58]  Qing Chen,et al.  Improved treatments for general boundary conditions in the lattice Boltzmann method for convection-diffusion and heat transfer processes. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[59]  Shiyi Chen,et al.  Lattice Boltzmann computations for reaction‐diffusion equations , 1993 .

[60]  Michael R. von Spakovsky,et al.  Direct numerical calculation of the kinematic tortuosity of reactive mixture flow in the anode layer of solid oxide fuel cells by the lattice Boltzmann method , 2007 .

[61]  Warren E. Stewart,et al.  Matrix Calculation of Multicomponent Mass Transfer in Isothermal Systems , 1964 .

[62]  Z. Chai,et al.  Generalized modification in the lattice Bhatnagar-Gross-Krook model for incompressible Navier-Stokes equations and convection-diffusion equations. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases , 1939 .

[64]  O. Deutschmann,et al.  Validation of a numerical method for interface-resolving simulation of multicomponent gas-liquid mass transfer and evaluation of multicomponent diffusion models , 2018 .

[65]  Z. Chai,et al.  Lattice Boltzmann model for the convection-diffusion equation. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  D. Thévenin,et al.  Mass-conserving advection–diffusion Lattice Boltzmann model for multi-species reacting flows , 2018, Physica A: Statistical Mechanics and its Applications.

[67]  Aksel Hiorth,et al.  An improved lattice Boltzmann method for simulating advective-diffusive processes in fluids , 2017, J. Comput. Phys..

[68]  K. Gandhi Use of Fick's law and Maxwell–Stefan equations in computation of multicomponent diffusion , 2012 .

[69]  Ross Taylor,et al.  Multicomponent mass transfer , 1993 .

[70]  L. Luo,et al.  Theory of the lattice Boltzmann method: two-fluid model for binary mixtures. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[71]  I. Ginzburg Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation , 2005 .

[72]  A. Wagner,et al.  Lattice Boltzmann simulation of mixtures with multicomponent van der Waals equation of state , 2018, Physical Review E.

[73]  D. Bothe,et al.  Applicability of the linearized theory of the Maxwell–Stefan equations , 2016 .

[74]  Lei Liu,et al.  Mass conservative finite volume discretization of the continuity equations in multi-component mixtures , 2011, J. Comput. Phys..

[75]  Jianhua Lu,et al.  General bounce-back scheme for concentration boundary condition in the lattice-Boltzmann method. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[76]  V. Giovangigli Multicomponent flow modeling , 1999 .

[77]  A. C. Faliagas,et al.  Mixed weak-perturbative solution method for Maxwell's equations of diffusion with Müller's partial stress tensor in the low velocity limit , 2016, J. Comput. Phys..

[78]  H. L. Toor Solution of the linearized equations of multicomponent mass transfer: I , 1964 .

[79]  K. Böttcher Numerical solution of a multi-component species transport problem combining diffusion and fluid flow as engineering benchmark , 2010 .

[80]  Wilson K. S. Chiu,et al.  Lattice Boltzmann modeling of 2D gas transport in a solid oxide fuel cell anode , 2007 .

[81]  Numerical solution of multi-component species transport in gases at any total number of components , 2012 .

[82]  Zhenhua Chai,et al.  A Multiple-Relaxation-Time Lattice Boltzmann Model for General Nonlinear Anisotropic Convection–Diffusion Equations , 2016, J. Sci. Comput..

[83]  Bruce D. Jones,et al.  Multiphase lattice Boltzmann simulations for porous media applications , 2014, Computational Geosciences.

[84]  Dieter Wolf-Gladrow,et al.  A lattice Boltzmann equation for diffusion , 1995 .

[85]  Yeomans,et al.  Lattice Boltzmann simulations of liquid-gas and binary fluid systems. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[86]  U. Nieken,et al.  On Maxwell–Stefan diffusion in Smoothed Particle Hydrodynamics , 2016 .

[87]  J. Boon The Lattice Boltzmann Equation for Fluid Dynamics and Beyond , 2003 .

[88]  Y. Liu,et al.  Multiscale Modeling of Single-Phase Multicomponent Transport in the Cathode Gas Diffusion Layer of a Polymer Electrolyte Fuel Cell , 2010 .

[89]  W. Tao,et al.  A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications , 2014 .

[90]  Chuguang Zheng,et al.  Finite-difference-based multiple-relaxation-times lattice Boltzmann model for binary mixtures. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[91]  Erlend Magnus Viggen,et al.  The Lattice Boltzmann Method , 2017 .

[92]  Erlend Magnus Viggen,et al.  The Lattice Boltzmann Method: Principles and Practice , 2016 .

[93]  Bastien Chopard,et al.  The lattice Boltzmann advection-diffusion model revisited , 2009 .

[94]  P. Asinari Lattice Boltzmann scheme for mixture modeling: analysis of the continuum diffusion regimes recovering Maxwell-Stefan model and incompressible Navier-Stokes equations. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[95]  I. Karlin,et al.  Lattice Boltzmann model for the simulation of multicomponent mixtures. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[96]  James Clerk Maxwell,et al.  IV. On the dynamical theory of gases , 1868, Philosophical Transactions of the Royal Society of London.

[97]  Irina Ginzburg,et al.  Generic boundary conditions for lattice Boltzmann models and their application to advection and anisotropic dispersion equations , 2005 .