Compressive sensing based image reconstruction for computed tomography dose reduction

....................................................................................................... xiii

[1]  Dirk A. Lorenz,et al.  Minimization of Non-smooth, Non-convex Functionals by Iterative Thresholding , 2014, Journal of Optimization Theory and Applications.

[2]  G Wang,et al.  Longitudinal image deblurring in spiral CT. , 1994, Radiology.

[3]  A. H. Andersen Algebraic reconstruction in CT from limited views. , 1989, IEEE transactions on medical imaging.

[4]  B. De Man,et al.  Distance-driven projection and backprojection in three dimensions. , 2004, Physics in medicine and biology.

[5]  R. J. Jasczak,et al.  Tomographic radiopharmaceutical imaging , 1988, Proc. IEEE.

[6]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[7]  T. J. Hebert,et al.  Numerical evaluation of methods for computing tomographic projections , 1994 .

[8]  Hengyong Yu,et al.  Sart-Type Half-Threshold Filtering Approach for CT Reconstruction , 2014, IEEE Access.

[9]  Jiehua Zhu,et al.  A generalized l1 greedy algorithm for image reconstruction in CT , 2013, Appl. Math. Comput..

[10]  M. Lai,et al.  Improved Iteratively Reweighted Least Squares for Unconstrained Smoothed 퓁q Minimization , 2013, SIAM J. Numer. Anal..

[11]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[12]  R. Tibshirani,et al.  PATHWISE COORDINATE OPTIMIZATION , 2007, 0708.1485.

[13]  David J Brenner,et al.  Estimated radiation risks potentially associated with full-body CT screening. , 2004, Radiology.

[14]  R. Q. Edwards,et al.  Image Separation Radioisotope Scanning , 1963 .

[15]  Chuang Miao,et al.  Comparative studies of different system models for iterative CT image reconstruction , 2013 .

[16]  Hengyong Yu,et al.  A soft-threshold filtering approach for reconstruction from a limited number of projections , 2010, Physics in medicine and biology.

[17]  Hengyong Yu,et al.  Finite detector based projection model for high spatial resolution. , 2012, Journal of X-ray science and technology.

[18]  Kenneth E. Barner,et al.  Iterative hard thresholding for compressed sensing with partially known support , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[19]  Goran Marjanovic,et al.  On $l_q$ Optimization and Matrix Completion , 2012, IEEE Transactions on Signal Processing.

[20]  Avinash C. Kak,et al.  Principles of computerized tomographic imaging , 2001, Classics in applied mathematics.

[21]  D. Brenner,et al.  Estimated risks of radiation-induced fatal cancer from pediatric CT. , 2001, AJR. American journal of roentgenology.

[22]  S. Deans The Radon Transform and Some of Its Applications , 1983 .

[23]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[24]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.

[25]  Goran Marjanovic,et al.  $l_{q}$ Sparsity Penalized Linear Regression With Cyclic Descent , 2014, IEEE Transactions on Signal Processing.

[26]  Gordon L. Brownell,et al.  A Multi-Crystal Positron Camera , 1972 .

[27]  Zongben Xu,et al.  Representative of L1/2 Regularization among Lq (0 < q ≤ 1) Regularizations: an Experimental Study Based on Phase Diagram , 2012 .

[28]  Dirk A. Lorenz,et al.  Iterated Hard Shrinkage for Minimization Problems with Sparsity Constraints , 2008, SIAM J. Sci. Comput..

[29]  L. Tanoue Computed Tomography — An Increasing Source of Radiation Exposure , 2009 .

[30]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[31]  N. Obuchowski,et al.  Preoperative 123I/99mTc-Sestamibi Subtraction SPECT and SPECT/CT in Primary Hyperparathyroidism , 2008, Journal of Nuclear Medicine.

[32]  David L. Donoho,et al.  Neighborly Polytopes And Sparse Solution Of Underdetermined Linear Equations , 2005 .

[33]  I F Gorodnitsky,et al.  Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm. , 1995, Electroencephalography and clinical neurophysiology.

[34]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .

[35]  Joel A. Tropp,et al.  Sparse Approximation Via Iterative Thresholding , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[36]  Balas K. Natarajan,et al.  Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..

[37]  T. Blumensath,et al.  Iterative Thresholding for Sparse Approximations , 2008 .

[38]  W R Hendee,et al.  Magnetic resonance imaging. Part I--physical principles. , 1984, The Western journal of medicine.

[39]  A. Lent,et al.  Iterative reconstruction algorithms. , 1976, Computers in biology and medicine.

[40]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[41]  Brendt Wohlberg,et al.  An Iteratively Reweighted Norm Algorithm for Minimization of Total Variation Functionals , 2007, IEEE Signal Processing Letters.

[42]  R. Chartrand,et al.  Restricted isometry properties and nonconvex compressive sensing , 2007 .

[43]  Amy Berrington de González,et al.  Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries , 2004, The Lancet.

[44]  I. Kozlov,et al.  Sparse Solutions of Underdetermined Linear Systems , 2015 .

[45]  B. Wohlberg,et al.  An Iteratively Reweighted Norm Algorithm for Total Variation Regularization , 2006, 2006 Fortieth Asilomar Conference on Signals, Systems and Computers.

[46]  Hengyong Yu,et al.  Compressed sensing based interior tomography , 2009, Physics in medicine and biology.

[47]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[48]  Lei Zhang,et al.  Low-Dose X-ray CT Reconstruction via Dictionary Learning , 2012, IEEE Transactions on Medical Imaging.

[49]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2009, Found. Comput. Math..

[50]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[51]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[52]  E. Hoffman,et al.  Application of annihilation coincidence detection to transaxial reconstruction tomography. , 1975, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[53]  Zongben Xu,et al.  $L_{1/2}$ Regularization: A Thresholding Representation Theory and a Fast Solver , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[54]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[55]  Gabor T. Herman,et al.  Fundamentals of Computerized Tomography: Image Reconstruction from Projections , 2009, Advances in Pattern Recognition.

[56]  E. Sidky,et al.  Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization , 2008, Physics in medicine and biology.

[57]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[58]  A. J. Jerri The Shannon sampling theorem—Its various extensions and applications: A tutorial review , 1977, Proceedings of the IEEE.

[59]  Wang Yao,et al.  L 1/2 regularization , 2010 .

[60]  B. De Man,et al.  Distance-driven projection and backprojection , 2002, 2002 IEEE Nuclear Science Symposium Conference Record.

[61]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[62]  Qiong Xu,et al.  An improved distance-driven method for projection and backprojection. , 2014, Journal of X-ray science and technology.

[63]  E. Hoffman,et al.  A positron-emission transaxial tomograph for nuclear imaging (PETT). , 1975, Radiology.

[64]  T. M. Peters Algorithms for Fast Back- and Re-Projection in Computed Tomography , 1981 .

[65]  Hengyong Yu,et al.  A General-Thresholding Solution for lp (0 , 2015, IEEE Trans. Image Process..

[66]  Emmanuel J. Candès,et al.  Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions , 2004, Found. Comput. Math..

[67]  David L. Donoho,et al.  High-Dimensional Centrally Symmetric Polytopes with Neighborliness Proportional to Dimension , 2006, Discret. Comput. Geom..

[68]  M. Jiang,et al.  Ordered-subset simultaneous algebraic reconstruction techniques (OS-SART) , 2004 .

[69]  Zongben Xu,et al.  Regularization: Convergence of Iterative Half Thresholding Algorithm , 2014 .

[70]  E. Sidky,et al.  Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT , 2009, 0904.4495.

[71]  Gengsheng L. Zeng,et al.  A Ray-driven Backprojector For Backprojection Filtering And Filtered Backprojection Algorithms , 1993, 1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference.

[72]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.