A new linear spectral transformation associated with derivatives of Dirac linear functionals

In this contribution, we analyze the regularity conditions of a perturbation on a quasi-definite linear functional by the addition of Dirac delta functionals supported on N points of the unit circle or on its complement. We also deal with a new example of linear spectral transformation. We introduce a perturbation of a quasi-definite linear functional by the addition of the first derivative of the Dirac linear functional when its support is a point on the unit circle or two points symmetric with respect to the unit circle. Necessary and sufficient conditions for the quasi-definiteness of the new linear functional are obtained. Outer relative asymptotics for the new sequence of monic orthogonal polynomials in terms of the original ones are obtained. Finally, we prove that this linear spectral transform can be decomposed as an iteration of Christoffel and Geronimus linear transformations.

[1]  Francisco Marcellán,et al.  Christoffel Transforms and Hermitian Linear Functionals , 2005 .

[2]  M. L. Wong C A ] 2 8 Se p 20 08 GENERALIZED BOUNDED VARIATION AND INSERTING , 2008 .

[3]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[4]  Barry Simon,et al.  Orthogonal Polynomials on the Unit Circle , 2004, Encyclopedia of Special Functions: The Askey-Bateman Project.

[5]  Szegö polynomials and Szegö quadrature for the Fejér kernel , 2005 .

[6]  Francisco Marcellán,et al.  Spectral transformations for Hermitian Toeplitz matrices , 2007 .

[7]  Linear spectral transformations , Hessenberg matrices , and orthogonal polynomials , 2009 .

[8]  D. Lubinsky,et al.  Universality Limits Involving Orthogonal Polynomials on the Unit Circle , 2007 .

[9]  F. Marcellán,et al.  Lebesgue perturbation of a quasi-definite Hermitian functional. The positive definite case , 2003 .

[10]  Alexei Zhedanov,et al.  Rational spectral transformations and orthogonal polynomials , 1997 .

[11]  I︠a︡. L. Geronimus Polynomials orthogonal on a circle and their applications , 1954 .

[12]  Francisco José,et al.  Polinomios ortogonales no estándar. Aplicaciones en análisis numérico y teoría de la aproximación , 2006 .

[13]  Leandro Moral,et al.  Direct and inverse polynomial perturbations of hermitian linear functionals , 2011, J. Approx. Theory.

[14]  Luis E. Garza-Castañón,et al.  Orthogonal polynomials and measures on the unit circle. The Geronimus transformations , 2010, J. Comput. Appl. Math..

[15]  M. J. Cantero,et al.  Polynomial perturbations of hermitian linear functionals and difference equations , 2009, 0908.2552.

[16]  Francisco Marcellán,et al.  Orthogonal Polynomials and Rational Modifications of Measures , 1993, Canadian Journal of Mathematics.

[17]  G. Szegő Zeros of orthogonal polynomials , 1939 .

[18]  Al Young Providence, Rhode Island , 1975 .

[19]  L. Garza,et al.  Perturbations on the subdiagonals of Toeplitz matrices , 2011 .