Self-Refining Games using Player Analytics

Data-driven simulation demands good training data drawn from a vast space of possible simulations. While fully sampling these large spaces is infeasible, we observe that in practical applications, such as gameplay, users explore only a vanishingly small subset of the dynamical state space. I n this paper we present a sampling ap-proach that takes advantage of this observation by concentrating precomputation around the states that users are most likely to en-counter. We demonstrate our technique in a prototype self -refining game whose dynamics improve with play, ultimately providing re-alistically rendered, rich fluid dynamics in real time on a mobile de-vice. Our results show that our analytics-driven training approach yields lower model error and fewer visual artifacts than a heuristic trainin g strategy.

[1]  Nancy S. Pollard,et al.  Responsive characters from motion fragments , 2007, SIGGRAPH 2007.

[2]  Adrien Treuille,et al.  Predicting protein structures with a multiplayer online game , 2010, Nature.

[3]  James F. O'Brien,et al.  Near-exhaustive precomputation of secondary cloth effects , 2013, ACM Trans. Graph..

[4]  Miles Macklin,et al.  Position based fluids , 2013, ACM Trans. Graph..

[5]  Adrien Treuille,et al.  Modular bases for fluid dynamics , 2009, SIGGRAPH 2009.

[6]  Z. Popovic,et al.  Model reduction for real-time fluids , 2006, SIGGRAPH 2006.

[7]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[8]  Bedrich Benes,et al.  Interactive terrain modeling using hydraulic erosion , 2008, SCA '08.

[9]  Magy Seif El-Nasr,et al.  Interaction, Narrative, and Drama Creating an Adaptive Interactive Narrative using Performance Arts Theories , 2007 .

[10]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[11]  Aniket Kittur,et al.  Crowdsourcing user studies with Mechanical Turk , 2008, CHI.

[12]  Kajal T. Claypool,et al.  Latency can kill: precision and deadline in online games , 2010, MMSys '10.

[13]  Michael J. Black,et al.  DRAPE , 2012, ACM Trans. Graph..

[14]  Yongning Zhu,et al.  Animating sand as a fluid , 2005, SIGGRAPH 2005.

[15]  Marc Alexa,et al.  How do humans sketch objects? , 2012, ACM Trans. Graph..

[16]  Laura A. Dabbish,et al.  Labeling images with a computer game , 2004, AAAI Spring Symposium: Knowledge Collection from Volunteer Contributors.

[17]  Mohit Gupta,et al.  Legendre fluids: a unified framework for analytic reduced space modeling and rendering of participating media , 2007, SCA '07.

[18]  Theodore Kim,et al.  Skipping steps in deformable simulation with online model reduction , 2009, SIGGRAPH 2009.

[19]  Adam W. Bargteil,et al.  Physics-inspired upsampling for cloth simulation in games , 2011, SIGGRAPH 2011.

[20]  Markus Gross,et al.  Real-time Breaking Waves for Shallow Water Simulations , 2007 .

[21]  Minjae Lee,et al.  RNA design rules from a massive open laboratory , 2014, Proceedings of the National Academy of Sciences.

[22]  Mark O. Riedl,et al.  Automatic playtesting for game parameter tuning via active learning , 2019, FDG.

[23]  Manuel Blum,et al.  Peekaboom: a game for locating objects in images , 2006, CHI.

[24]  R. Pajarola,et al.  Predictive-corrective incompressible SPH , 2009, SIGGRAPH 2009.

[25]  Matthias Müller,et al.  Real-time simulation of large bodies of water with small scale details , 2010, SCA '10.

[26]  Theodore Kim,et al.  Subspace fluid re-simulation , 2013, ACM Trans. Graph..

[27]  Richard Szeliski,et al.  Video textures , 2000, SIGGRAPH.

[28]  Adrien Treuille,et al.  Non-polynomial Galerkin projection on deforming meshes , 2013, ACM Trans. Graph..

[29]  Adrien Treuille,et al.  Real-time drawing assistance through crowdsourcing , 2013, HCOMP.

[30]  David Thue,et al.  Interactive Storytelling: A Player Modelling Approach , 2007, AIIDE.

[31]  Doug L. James,et al.  Real-Time subspace integration for St. Venant-Kirchhoff deformable models , 2005, SIGGRAPH 2005.

[32]  Mark O. Riedl,et al.  Skill-based Mission Generation: A Data-driven Temporal Player Modeling Approach , 2012, PCG@FDG.

[33]  Aaron Hertzmann,et al.  Active learning for real-time motion controllers , 2007, SIGGRAPH 2007.