Metric tensors for anisotropic mesh generation
暂无分享,去创建一个
[1] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[2] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[3] Weizhang Huang,et al. Variational mesh adaptation II: error estimates and monitor functions , 2003 .
[4] B. Joe,et al. Relationship between tetrahedron shape measures , 1994 .
[5] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[6] Thomas Apel,et al. Anisotropic interpolation with applications to the finite element method , 1991, Computing.
[7] Martin H. Gutknecht,et al. Variants of BICGSTAB for Matrices with Complex Spectrum , 1993, SIAM J. Sci. Comput..
[8] M. Fortin,et al. Anisotropic mesh adaptation: towards user‐independent, mesh‐independent and solver‐independent CFD. Part II. Structured grids , 2002 .
[9] Mark S. Shephard,et al. Boundary Layer Meshing for Viscous Flows in Complex Domains , 1998, IMR.
[10] Kunibert G. Siebert,et al. An a posteriori error estimator for anisotropic refinement , 1996 .
[11] M. Fortin,et al. Anisotropic mesh adaptation: towards user‐independent, mesh‐independent and solver‐independent CFD. Part I: general principles , 2000 .
[12] E. F. D'Azevedo,et al. On optimal triangular meshes for minimizing the gradient error , 1991 .
[13] A. Liu,et al. On the shape of tetrahedra from bisection , 1994 .
[14] Gerd Kunert,et al. A posteriori error estimation for anisotropic tetrahedral and triangular finite element meshes , 1999 .
[15] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .
[16] Kenji Shimada,et al. High Quality Anisotropic Tetrahedral Mesh Generation Via Ellipsoidal Bubble Packing , 2000, IMR.
[17] Zhimin Zhang,et al. A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..
[18] Paul S. Heckbert,et al. A Pliant Method for Anisotropic Mesh Generation , 1996 .
[19] J. Remacle,et al. Anisotropic adaptive simulation of transient flows using discontinuous Galerkin methods , 2005 .
[20] Gerd Kunert,et al. Edge residuals dominate a posteriori error estimates for linear finite element methods on anisotropic triangular and tetrahedral meshes , 2000, Numerische Mathematik.
[21] T. Apel. Anisotropic Finite Elements: Local Estimates and Applications , 1999 .
[22] P. George,et al. Delaunay mesh generation governed by metric specifications. Part II. applications , 1997 .
[23] Rob Hagmeijer. Grid adaption based on modified anisotropic diffusion equations formulated in the parametric domain , 1994 .
[24] Christoph Pflaum,et al. On a posteriori error estimators in the infinite element method on anisotropic meshes. , 1999 .
[25] P. George,et al. Delaunay mesh generation governed by metric specifications. Part I algorithms , 1997 .
[26] Simona Perotto,et al. New anisotropic a priori error estimates , 2001, Numerische Mathematik.
[27] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .
[28] Gerd Kunert,et al. A Local Problem Error Estimator for Anisotropic Tetrahedral Finite Element Meshes , 2001, SIAM J. Numer. Anal..
[29] Frédéric Hecht,et al. Anisotropic unstructured mesh adaption for flow simulations , 1997 .
[30] Weizhang Huang,et al. Measuring Mesh Qualities and Application to Variational Mesh Adaptation , 2005, SIAM J. Sci. Comput..
[31] E. F. D’Azevedo,et al. Optimal Triangular Mesh Generation by Coordinate Transformation , 1991, SIAM J. Sci. Comput..
[32] Gerd Kunert,et al. An a posteriori residual error estimator for the finite element method on anisotropic tetrahedral meshes , 2000, Numerische Mathematik.
[33] O. C. Zienkiewicz,et al. Adaptive remeshing for compressible flow computations , 1987 .