Metric tensors for anisotropic mesh generation

It has been amply demonstrated that significant improvements in accuracy and efficiency can be gained when a properly chosen anisotropic mesh is used in the numerical solution for a large class of problems which exhibit anisotropic solution features. In practice, an anisotropic mesh is commonly generated as a quasi-uniform mesh in the metric determined by a tensor specifying the shape, size, orientation of elements. Thus, it is crucial to choose an appropriate metric tensor for anisotropic mesh generation and adaptation. In this paper, we develop a general formula for the metric tensor for use in any spatial dimension. The formulation is based on error estimates for polynomial preserving interpolation on simiplicial elements. Numerical results in two-dimensions are presented to demonstrate the ability of the metric tensor to produce anisotropic meshes with correct mesh concentration and good overall quality. The procedure developed in this paper for defining the metric tensor can also be applied to other types of error estimates.

[1]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[2]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[3]  Weizhang Huang,et al.  Variational mesh adaptation II: error estimates and monitor functions , 2003 .

[4]  B. Joe,et al.  Relationship between tetrahedron shape measures , 1994 .

[5]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[6]  Thomas Apel,et al.  Anisotropic interpolation with applications to the finite element method , 1991, Computing.

[7]  Martin H. Gutknecht,et al.  Variants of BICGSTAB for Matrices with Complex Spectrum , 1993, SIAM J. Sci. Comput..

[8]  M. Fortin,et al.  Anisotropic mesh adaptation: towards user‐independent, mesh‐independent and solver‐independent CFD. Part II. Structured grids , 2002 .

[9]  Mark S. Shephard,et al.  Boundary Layer Meshing for Viscous Flows in Complex Domains , 1998, IMR.

[10]  Kunibert G. Siebert,et al.  An a posteriori error estimator for anisotropic refinement , 1996 .

[11]  M. Fortin,et al.  Anisotropic mesh adaptation: towards user‐independent, mesh‐independent and solver‐independent CFD. Part I: general principles , 2000 .

[12]  E. F. D'Azevedo,et al.  On optimal triangular meshes for minimizing the gradient error , 1991 .

[13]  A. Liu,et al.  On the shape of tetrahedra from bisection , 1994 .

[14]  Gerd Kunert,et al.  A posteriori error estimation for anisotropic tetrahedral and triangular finite element meshes , 1999 .

[15]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[16]  Kenji Shimada,et al.  High Quality Anisotropic Tetrahedral Mesh Generation Via Ellipsoidal Bubble Packing , 2000, IMR.

[17]  Zhimin Zhang,et al.  A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..

[18]  Paul S. Heckbert,et al.  A Pliant Method for Anisotropic Mesh Generation , 1996 .

[19]  J. Remacle,et al.  Anisotropic adaptive simulation of transient flows using discontinuous Galerkin methods , 2005 .

[20]  Gerd Kunert,et al.  Edge residuals dominate a posteriori error estimates for linear finite element methods on anisotropic triangular and tetrahedral meshes , 2000, Numerische Mathematik.

[21]  T. Apel Anisotropic Finite Elements: Local Estimates and Applications , 1999 .

[22]  P. George,et al.  Delaunay mesh generation governed by metric specifications. Part II. applications , 1997 .

[23]  Rob Hagmeijer Grid adaption based on modified anisotropic diffusion equations formulated in the parametric domain , 1994 .

[24]  Christoph Pflaum,et al.  On a posteriori error estimators in the infinite element method on anisotropic meshes. , 1999 .

[25]  P. George,et al.  Delaunay mesh generation governed by metric specifications. Part I algorithms , 1997 .

[26]  Simona Perotto,et al.  New anisotropic a priori error estimates , 2001, Numerische Mathematik.

[27]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[28]  Gerd Kunert,et al.  A Local Problem Error Estimator for Anisotropic Tetrahedral Finite Element Meshes , 2001, SIAM J. Numer. Anal..

[29]  Frédéric Hecht,et al.  Anisotropic unstructured mesh adaption for flow simulations , 1997 .

[30]  Weizhang Huang,et al.  Measuring Mesh Qualities and Application to Variational Mesh Adaptation , 2005, SIAM J. Sci. Comput..

[31]  E. F. D’Azevedo,et al.  Optimal Triangular Mesh Generation by Coordinate Transformation , 1991, SIAM J. Sci. Comput..

[32]  Gerd Kunert,et al.  An a posteriori residual error estimator for the finite element method on anisotropic tetrahedral meshes , 2000, Numerische Mathematik.

[33]  O. C. Zienkiewicz,et al.  Adaptive remeshing for compressible flow computations , 1987 .