Triviality of Bloch and Bloch–Dirac Bundles

Abstract.In the framework of the theory of an electron in a periodic potential, we reconsider the longstanding problem of the existence of smooth and periodic quasi-Bloch functions, which is shown to be equivalent to the triviality of the Bloch bundle. By exploiting the time-reversal symmetry of the Hamiltonian and some bundle-theoretic methods, we show that the problem has a positive answer in any dimension d ≤ 3, thus generalizing a previous result by G. Nenciu. We provide a general formulation of the result, aiming at the application to the Dirac equation with a periodic potential and to piezoelectricity.

[1]  N. Marzari,et al.  Maximally localized generalized Wannier functions for composite energy bands , 1997, cond-mat/9707145.

[2]  G. Nenciu Existence of the exponentially localised Wannier functions , 1983 .

[3]  S. Goedecker Linear scaling electronic structure methods , 1999 .

[4]  C. Isham,et al.  Quantum Field Theory and Fibre Bundles in a General Space-Time , 1979 .

[5]  A. S. Lyskova Topological characteristics of the spectrum of the Schrödinger operator in a magnetic field and in a weak potential , 1985 .

[6]  Bernd Thaller,et al.  The Dirac Equation , 1992 .

[7]  Klaus Fritzsche,et al.  From holomorphic functions to complex manifolds , 2002 .

[8]  R. Percacci Geometry of nonlinear field theories , 1986 .

[9]  R. Ho Algebraic Topology , 2022 .

[10]  Bernard Helffer,et al.  Equation de Schrödinger avec champ magnétique et équation de Harper , 1989 .

[11]  Jean-Luc Brylinski,et al.  Loop Spaces, Characteristic Classes and Geometric Quantization , 1994 .

[12]  D. Bleecker,et al.  Gauge theory and variational principles , 1981 .

[13]  B. Dubrovin,et al.  MAGNETIC BLOCH FUNCTIONS AND VECTOR BUNDLES. TYPICAL DISPERSION LAWS AND THEIR QUANTUM NUMBERS , 2007 .

[14]  N. Marzari,et al.  Exponential localization of Wannier functions in insulators. , 2006, Physical review letters.

[15]  J. D. Cloizeaux,et al.  Energy Bands and Projection Operators in a Crystal: Analytic and Asymptotic Properties , 1964 .

[16]  S. Novikov,et al.  Ground states of a two-dimensional electron in a periodic magnetic field , 1981 .

[17]  N. Steenrod Topology of Fibre Bundles , 1951 .

[18]  S. Kivelson,et al.  Wannier functions in one-dimensional disordered systems: Application to fractionally charged solitons , 1982 .

[19]  D. Thouless Wannier functions for magnetic sub-bands , 1984 .

[20]  G. Nenciu Dynamics of band electrons in electric and magnetic fields: rigorous justification of the effective Hamiltonians , 1991 .

[21]  G. Nenciu,et al.  The Existence of Generalised Wannier Functions for One-Dimensional Systems , 1998 .

[22]  Stefan Teufel,et al.  Effective Dynamics for Bloch Electrons: Peierls Substitution and Beyond , 2002 .