Wavelets in time-series analysis

This article reviews the role of wavelets in statistical time–series analysis. We survey work that emphasizes scale, such as estimation of variance, and the scale exponent of processes with a specific scale behaviour, such as 1/f processes. We present some of our own work on locally stationary wavelet (LSW) processes, which model both stationary and some kinds of non–stationary processes. Analysis of time–series assuming the LSW model permits identification of an evolutionary wavelet spectrum (EWS) that quantifies the variation in a time–series over a particular scale and at a particular time. We address estimation of the EWS and show how our methodology reveals phenomena of interest in an infant electrocardiogram series.

[1]  C. Page Instantaneous Power Spectra , 1952 .

[2]  Richard A. Silverman,et al.  Locally stationary random processes , 2018, IRE Trans. Inf. Theory.

[3]  M. Priestley Evolutionary Spectra and Non‐Stationary Processes , 1965 .

[4]  D. W. Allan,et al.  Statistics of atomic frequency standards , 1966 .

[5]  D. B. Preston Spectral Analysis and Time Series , 1983 .

[6]  O. Rioul,et al.  Wavelets and signal processing , 1991, IEEE Signal Processing Magazine.

[7]  Gregory W. Wornell,et al.  Estimation of fractal signals from noisy measurements using wavelets , 1992, IEEE Trans. Signal Process..

[8]  Peter Guttorp,et al.  Long-Memory Processes, the Allan Variance and Wavelets , 1994 .

[9]  Jan Beran,et al.  Statistics for long-memory processes , 1994 .

[10]  B. Silverman,et al.  The Stationary Wavelet Transform and some Statistical Applications , 1995 .

[11]  D. Donoho,et al.  Translation-Invariant De-Noising , 1995 .

[12]  D. Donoho,et al.  Translation-Invariant DeNoising , 1995 .

[13]  P. Abry,et al.  Wavelets, spectrum analysis and 1/ f processes , 1995 .

[14]  Kai Schneider,et al.  Wavelet Smoothing of Evolutionary Spectra by Non-Linear Thresholding , 1996 .

[15]  A. Walden,et al.  Wavelet Analysis and Synthesis of Stationary Long-Memory Processes , 1996 .

[16]  Michael H. Neumann SPECTRAL DENSITY ESTIMATION VIA NONLINEAR WAVELET METHODS FOR STATIONARY NON‐GAUSSIAN TIME SERIES , 1996 .

[17]  Rainer von Sachs,et al.  Wavelet thresholding in anisotropic function classes and application to adaptive estimation of evolutionary spectra , 1997 .

[18]  Hong-ye Gao Choice of thresholds for wavelet shrinkage estimate of the spectrum , 1997 .

[19]  R. Dahlhaus Fitting time series models to nonstationary processes , 1997 .

[20]  Theofanis Sapatinas,et al.  Statistical modelling of time series using non-decimated waveletrepresentations , 1997 .

[21]  Patrick Flandrin,et al.  Time-Frequency/Time-Scale Analysis , 1998 .

[22]  Patrick Flandrin,et al.  Time-Frequency/Time-Scale Analysis, Volume 10 , 1998 .

[23]  Andrew Walden,et al.  Statistical Properties of the Wavelet Variance Estimator for Non-gaussian/non-linear Time Series , 1998 .

[24]  B. Silverman,et al.  Wavelets in statistics: beyond the standard assumptions , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[25]  M. Hoffmann On nonparametric estimation in nonlinear AR(1)-models , 1999 .

[26]  I. Johnstone Wavelets and the theory of non-parametric function estimation , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[27]  B. MacGibbon,et al.  Non‐parametric Curve Estimation by Wavelet Thresholding with Locally Stationary Errors , 2000 .

[28]  Rainer von Sachs,et al.  A Wavelet‐Based Test for Stationarity , 2000 .

[29]  G. Nason,et al.  Wavelet processes and adaptive estimation of the evolutionary wavelet spectrum , 2000 .

[30]  Joseph E. Cavanaugh,et al.  Self-similarity index estimation via wavelets for locally self-similar processes , 2001 .