Generalized acyclic edge colorings via entropy compression

An r-acyclic edge coloring of a graph G is a proper edge coloring such that any cycle C has at least $$\min \{|C|,r\}$$min{|C|,r} colors. The least number of colors needed for an r-acyclic edge coloring of G is called the r-acyclic edge chromatic number or the r-acyclic chromatic index of G, denoted by $$A'_{r}\left( G\right) $$Ar′G. In this paper, we study the r-acyclic edge chromatic number with $$r\ge 4$$r≥4 and prove that $$A'_{r}\left( G\right) \le 2\Delta ^{\lfloor \tfrac{r}{2}\rfloor }+O\left( \Delta ^{\tfrac{r+1}{3}}\right) $$Ar′G≤2Δ⌊r2⌋+OΔr+13. We also prove that when r is even, $$A'_{r}\left( G\right) \le \Delta ^{\tfrac{r}{2}}+O\left( \Delta ^{\tfrac{r+1}{3}}\right) $$Ar′G≤Δr2+OΔr+13, which is asymptotically optimal. In addition, we investigate how the r-acyclic edge chromatic number performs as the girth increases. It is proved in this paper that for every graph G with girth at least $$2r-1$$2r-1, $$A'_r\left( G\right) \le \left( 9r-7\right) \Delta +10r-12$$Ar′G≤9r-7Δ+10r-12 holds. Our approach is based on the entropy compression method.

[1]  Mickaël Montassier,et al.  Entropy compression method applied to graph colorings , 2014, ArXiv.

[2]  Bruce A. Reed,et al.  Acyclic edge colourings of graphs with large girth , 2017, Random Struct. Algorithms.

[3]  Dimitrios M. Thilikos,et al.  On the Algorithmic Lovász Local Lemma and Acyclic Edge Coloring , 2015, ANALCO.

[4]  Bruce A. Reed,et al.  Acyclic Coloring of Graphs , 1991, Random Struct. Algorithms.

[5]  Jakub Przybylo,et al.  On the Facial Thue Choice Index via Entropy Compression , 2012, J. Graph Theory.

[6]  Bruce A. Reed,et al.  Further algorithmic aspects of the local lemma , 1998, STOC '98.

[7]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[8]  Nicholas C. Wormald,et al.  The generalized acyclic edge chromatic number of random regular graphs , 2006 .

[9]  Noga Alon,et al.  Acyclic edge colorings of graphs , 2001 .

[10]  Gábor Tardos,et al.  A constructive proof of the general lovász local lemma , 2009, JACM.

[11]  Stefanie Gerke,et al.  Generalised acyclic edge colourings of graphs with large girth , 2007, Discret. Math..

[12]  Jan Volec,et al.  A note on acyclic vertex-colorings , 2013, 1312.5600.

[13]  Catherine S. Greenhill,et al.  Bounds on the Generalised Acyclic Chromatic Numbers of Bounded Degree Graphs , 2005, Graphs Comb..

[14]  Nicholas C. Wormald,et al.  The acyclic edge chromatic number of a random d-regular graph is d + 1 , 2005 .

[15]  Aldo Procacci,et al.  Improved bounds on coloring of graphs , 2010, Eur. J. Comb..

[16]  Anton Bernshteyn,et al.  New bounds for the acyclic chromatic index , 2014, Discret. Math..

[17]  Aline Parreau,et al.  Acyclic edge-coloring using entropy compression , 2012, Eur. J. Comb..