Generalized acyclic edge colorings via entropy compression
暂无分享,去创建一个
[1] Mickaël Montassier,et al. Entropy compression method applied to graph colorings , 2014, ArXiv.
[2] Bruce A. Reed,et al. Acyclic edge colourings of graphs with large girth , 2017, Random Struct. Algorithms.
[3] Dimitrios M. Thilikos,et al. On the Algorithmic Lovász Local Lemma and Acyclic Edge Coloring , 2015, ANALCO.
[4] Bruce A. Reed,et al. Acyclic Coloring of Graphs , 1991, Random Struct. Algorithms.
[5] Jakub Przybylo,et al. On the Facial Thue Choice Index via Entropy Compression , 2012, J. Graph Theory.
[6] Bruce A. Reed,et al. Further algorithmic aspects of the local lemma , 1998, STOC '98.
[7] Reinhard Diestel,et al. Graph Theory , 1997 .
[8] Nicholas C. Wormald,et al. The generalized acyclic edge chromatic number of random regular graphs , 2006 .
[9] Noga Alon,et al. Acyclic edge colorings of graphs , 2001 .
[10] Gábor Tardos,et al. A constructive proof of the general lovász local lemma , 2009, JACM.
[11] Stefanie Gerke,et al. Generalised acyclic edge colourings of graphs with large girth , 2007, Discret. Math..
[12] Jan Volec,et al. A note on acyclic vertex-colorings , 2013, 1312.5600.
[13] Catherine S. Greenhill,et al. Bounds on the Generalised Acyclic Chromatic Numbers of Bounded Degree Graphs , 2005, Graphs Comb..
[14] Nicholas C. Wormald,et al. The acyclic edge chromatic number of a random d-regular graph is d + 1 , 2005 .
[15] Aldo Procacci,et al. Improved bounds on coloring of graphs , 2010, Eur. J. Comb..
[16] Anton Bernshteyn,et al. New bounds for the acyclic chromatic index , 2014, Discret. Math..
[17] Aline Parreau,et al. Acyclic edge-coloring using entropy compression , 2012, Eur. J. Comb..