Detector imperfections in photon-pair source characterization

We analyse how imperfections in single-photon detectors impact the characterization of photon-pair sources. We perform exact calculations to reveal the effects of multi-pair emissions and of noisy, non-unit efficiency, nonphoton-number resolving detections on the Cauchy–Schwarz parameter, on the second-order auto-correlation and cross-correlation functions, and on the visibilities of both Hong–Ou–Mandel and Bell-like interferences. We consider sources producing either two-mode squeezed states or states with a Poissonian photon distribution. The proposed formulas are useful in practice to determine the impacts of multi-pair emissions and dark counts in standard tests used in quantum optics.

[1]  K. Sanaka,et al.  New high-efficiency source of photon pairs for engineering quantum entanglement. , 2001, Physical review letters.

[2]  Félix Bussières,et al.  Quantum storage of photonic entanglement in a crystal , 2010, Nature.

[3]  Thomas Legero,et al.  Quantum beat of two single photons. , 2004, Physical review letters.

[4]  Jun Zhang,et al.  Comprehensive Characterization of InGaAs–InP Avalanche Photodiodes at 1550 nm With an Active Quenching ASIC , 2008, IEEE Journal of Quantum Electronics.

[5]  Alan L Migdall,et al.  High accuracy verification of a correlated-photon- based method for determining photoncounting detection efficiency. , 2007, Optics express.

[6]  David C. Burnham,et al.  Observation of Simultaneity in Parametric Production of Optical Photon Pairs , 1970 .

[7]  V. Scarani,et al.  Two independent photon pairs versus four-photon entangled states in parametric down conversion , 2003, quant-ph/0310167.

[8]  R. Sillitto The Quantum Theory of Light , 1974 .

[9]  O. Alibart,et al.  High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources , 2009, 0912.5312.

[10]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[11]  Fiber-based source of photon pairs at telecom band with high temporal coherence and brightness for quantum information processing. , 2008, Optics letters.

[12]  F. Bussières,et al.  Broadband waveguide quantum memory for entangled photons , 2010, Nature.

[13]  Félix Bussières,et al.  Microstructured fiber source of photon pairs at widely separated wavelengths. , 2009, Optics letters.

[14]  H. Weinfurter,et al.  Experimental Entanglement Swapping: Entangling Photons That Never Interacted , 1998 .

[15]  Sae Woo Nam,et al.  High-efficiency, ultra low-noise all-fiber photon-pair source. , 2008, Optics express.

[16]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[17]  P. Grangier,et al.  Experimental Evidence for a Photon Anticorrelation Effect on a Beam Splitter: A New Light on Single-Photon Interferences , 1986 .

[18]  Kyo Inoue,et al.  1.5-microm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber. , 2005, Optics express.

[19]  Nicolas Gisin,et al.  High coherence photon pair source for quantum communication , 2007, 0710.1143.

[20]  P. Kumar,et al.  All-fiber photon-pair source for quantum communications , 2002, IEEE Photonics Technology Letters.

[21]  Nicolas Gisin,et al.  Quantum repeaters based on atomic ensembles and linear optics , 2009, 0906.2699.

[22]  N. Gisin,et al.  Quantum interference with photon pairs created in spatially separated sources , 2003 .

[23]  J Fan,et al.  Invited review article: Single-photon sources and detectors. , 2011, The Review of scientific instruments.

[24]  J. Clauser Experimental distinction between the quantum and classical field - theoretic predictions for the pho , 1973 .

[25]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[26]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .

[27]  H. Weinfurter,et al.  Entangling Photons Radiated by Independent Pulsed Sources a , 1995 .

[28]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[29]  L J Wang,et al.  Generation of correlated photon pairs in a microstructure fiber. , 2005, Optics letters.

[30]  N. Gisin,et al.  Highly efficient photon-pair source using periodically poled lithium niobate waveguide , 2000 .

[31]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[32]  A. D. Boozer,et al.  Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles , 2003, Nature.

[33]  Jeremie Fulconis,et al.  Photonic crystal fiber source of correlated photon pairs. , 2005 .