The W43-MM1 mini-starburst ridge, a test for star formation efficiency models ?

Context. Star formation e ciency (SFE) theories are currently based on statistical distributions of turbulent cloud structures and a simple model of star formation from cores. They remain poorly tested, especially at the highest densities. Aims. We investigate the e ects of gas density on the SFE through measurements of the core formation e ciency (CFE). With a total mass of 2 10 4 M , the W43-MM1 ridge is one of the most convincing candidate precursors of Galactic starburst clusters and thus one of the best places to investigate star formation. Methods. We used high-angular resolution maps obtained at 3 mm and 1 mm within the W43-MM1 ridge with the IRAM Plateau de Bure Interferometer to reveal a cluster of 11 massive dense cores, and, one of the most massive protostellar cores known. A Herschel column density image provided the mass distribution of the cloud gas. We then measured the “instantaneous” CFE and estimated the SFE and the star formation rate (SFR) within subregions of the W43-MM1 ridge. Results. The high SFE found in the ridge ( 6% enclosed in 8 pc 3 ) confirms its ability to form a starburst cluster. There is, however, a clear lack of dense cores in the eastern part of the ridge, which may be currently assembling. The CFE and the SFE are observed to increase with volume gas density, while the SFR per free fall time steeply decreases with the virial parameter, vir. Statistical models of the SFR may describe the outskirts of the W43-MM1 ridge well, but struggle to reproduce its inner part, which corresponds to measurements at low vir. It may be that ridges do not follow the log-normal density distribution, Larson relations, and stationary conditions forced in the statistical SFR models.

[1]  S. Bontemps,et al.  THE DEPENDENCE OF PROTOSTELLAR LUMINOSITY ON ENVIRONMENT IN THE CYGNUS-X STAR-FORMING COMPLEX , 2014, 1405.0004.

[2]  L. Testi,et al.  Hierarchical fragmentation and differential star formation in the Galactic ‘Snake’: infrared dark cloud G11.11−0.12 , 2014, 1401.4157.

[3]  N. Evans,et al.  STAR FORMATION RELATIONS IN NEARBY MOLECULAR CLOUDS , 2014, 1401.3287.

[4]  N. Patel,et al.  HOT CORE, OUTFLOWS, AND MAGNETIC FIELDS IN W43-MM1 (G30.79 FIR 10) , 2013, 1312.2561.

[5]  N. Peretto,et al.  Reconstructing the density and temperature structure of prestellar cores from Herschel data: A case study for B68 and L1689B , 2013, 1311.5086.

[6]  M. Lombardi,et al.  SCHMIDT'S CONJECTURE AND STAR FORMATION IN MOLECULAR CLOUDS , 2013, 1309.7055.

[7]  A. Duarte-Cabral,et al.  CO outflows from high-mass Class 0 protostars in Cygnus-X , 2013, 1308.6490.

[8]  C. Kramer,et al.  Large scale IRAM 30 m CO-observations in the giant molecular cloud complex W43 , 2013, 1308.6112.

[9]  N. Peretto,et al.  Global collapse of molecular clouds as a formation mechanism for the most massive stars , 2013, 1307.2590.

[10]  C. Kramer,et al.  LOW-VELOCITY SHOCKS TRACED BY EXTENDED SiO EMISSION ALONG THE W43 RIDGES: WITNESSING THE FORMATION OF YOUNG MASSIVE CLUSTERS , 2013, 1306.0547.

[11]  P. Hennebelle,et al.  ANALYTICAL THEORY FOR THE INITIAL MASS FUNCTION. III. TIME DEPENDENCE AND STAR FORMATION RATE , 2013, 1304.6637.

[12]  P. Hennebelle,et al.  EARLY STAGES OF CLUSTER FORMATION: FRAGMENTATION OF MASSIVE DENSE CORES DOWN TO ≲ 1000 AU , 2012, 1211.2666.

[13]  R. Klessen,et al.  THE STAR FORMATION RATE OF TURBULENT MAGNETIZED CLOUDS: COMPARING THEORY, SIMULATIONS, AND OBSERVATIONS , 2012, 1209.2856.

[14]  L. Mundy,et al.  The Coordinated Radio and Infrared Survey for High-Mass Star Formation (The CORNISH Survey). I. Survey Design , 2012, 1208.3351.

[15]  M. Sauvage,et al.  The spine of the swan: a Herschel study of the DR21 ridge and filaments in Cygnus X , 2012, 1206.1243.

[16]  Q. N. Luong Linking the formation of molecular clouds and high-mass stars: A multi-tracer and multi-scale study , 2012 .

[17]  M. Sauvage,et al.  The M16 molecular complex under the influence of NGC6611. Herschel's perspective of the heating effect on the Eagle Nebula , 2012, 1204.6317.

[18]  P. Didelon,et al.  A multi-scale, multi-wavelength source extraction method: getsources , 2012, 1204.4508.

[19]  S. Bontemps,et al.  The massive protostar W43-MM1 as seen by Herschel-HIFI water spectra : High turbulence and accretion luminosity , 2012, 1204.0397.

[20]  R. Plume,et al.  Star formation towards the Scutum tangent region and the effects of Galactic environment , 2012, 1203.0295.

[21]  O. Krause,et al.  The onset of high-mass star formation in the direct vicinity of the Galactic mini-starburst W43 , 2011, 1112.3543.

[22]  K. Menten,et al.  Parallaxes and proper motions of interstellar masers toward the Cygnus X star-forming complex. I. Membership of the Cygnus X region , 2011, 1111.7023.

[23]  P. Hennebelle,et al.  ANALYTICAL STAR FORMATION RATE FROM GRAVOTURBULENT FRAGMENTATION , 2011, 1110.0033.

[24]  M. Sauvage,et al.  The Herschel view of massive star formation in G035.39-00.33: dense and cold filament of W48 undergoing a mini-starburst , 2011, 1109.3584.

[25]  Annie Zavagno,et al.  Filaments and ridges in Vela C revealed by Herschel: from low-mass to high-mass star-forming sites , 2011, 1108.0941.

[26]  L. Allen,et al.  A CORRELATION BETWEEN SURFACE DENSITIES OF YOUNG STELLAR OBJECTS AND GAS IN EIGHT NEARBY MOLECULAR CLOUDS , 2011, 1107.0966.

[27]  S. Bontemps,et al.  W43: the closest molecular complex of the Galactic bar? , 2011, 1102.3460.

[28]  M. Lombardi,et al.  ON THE STAR FORMATION RATES IN MOLECULAR CLOUDS , 2010, 1009.2985.

[29]  N. Evans,et al.  THE STAR FORMATION RATE AND GAS SURFACE DENSITY RELATION IN THE MILKY WAY: IMPLICATIONS FOR EXTRAGALACTIC STUDIES , 2010, 1009.1621.

[30]  I. Bonnell,et al.  The efficiency of star formation in clustered and distributed regions , 2010, 1009.1152.

[31]  S. Bontemps,et al.  Gas dynamics in Massive Dense Cores in Cygnus-X (Csengeri+, 2011) , 2010, 1009.0598.

[32]  Olivier Schnurr,et al.  The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted 150 M⊙ stellar mass limit , 2010, 1007.3284.

[33]  M. Sauvage,et al.  Initial highlights of the HOBYS key program , the Herschel imaging survey of OB young stellar objects Journal Item , 2018 .

[34]  P. Cortés,et al.  G30.79 FIR 10: a gravitationally bound infalling high-mass star-forming clump , 2010, 1006.5093.

[35]  S. Bontemps,et al.  The earliest phases of high-mass star formation: the NGC 6334-NGC 6357 complex , 2010 .

[36]  A. Ginsburg,et al.  Herschel observations of the W43 “mini-starburst” , 2010, 1005.4092.

[37]  H. Roussel,et al.  From filamentary clouds to prestellar cores to the stellar IMF: Initial highlights from the Herschel Gould Belt survey , 2010, 1005.2618.

[38]  Stanford,et al.  Dynamic star formation in the massive DR21 filament , 2010, 1003.4198.

[39]  S. Bontemps,et al.  Fragmentation and mass segregation in the massive dense cores of Cygnus X , 2009, 0909.2315.

[40]  P. Padoan,et al.  THE STAR FORMATION RATE OF SUPERSONIC MAGNETOHYDRODYNAMIC TURBULENCE , 2009, 0907.0248.

[41]  D. Padgett,et al.  THE SPITZER c2d LEGACY RESULTS: STAR-FORMATION RATES AND EFFICIENCIES; EVOLUTION AND LIFETIMES , 2008, 0811.1059.

[42]  C. Pinte,et al.  Spectral energy distribution modelling of southern candidate massive protostars using the Bayesian inference method , 2008, 0810.3158.

[43]  O. Schnurr,et al.  The very massive binary NGC 3603-A1 , 2008, 0806.2815.

[44]  R. Genzel,et al.  The most massive stars in the Arches cluster , 2007, 0711.0657.

[45]  S. Bontemps,et al.  The earliest phases of high-mass star formation: a 3 square degree millimeter continuum mapping of Cygnus X , 2007, 0708.2774.

[46]  J. Rathborne,et al.  The Detection of Protostellar Condensations in Infrared Dark Cloud Cores , 2007 .

[47]  M. Lombardi,et al.  The mass function of dense molecular cores and the origin of the IMF , 2006, astro-ph/0612126.

[48]  P. Cortés,et al.  Interferometric Mapping of Magnetic Fields: G30.79 FIR 10 , 2006, astro-ph/0607357.

[49]  Christopher F. McKee,et al.  A General Theory of Turbulence-regulated Star Formation, from Spirals to Ultraluminous Infrared Galaxies , 2005, astro-ph/0505177.

[50]  F. Motte,et al.  From Massive Protostars to a Giant H II Region: Submillimeter Imaging of the Galactic Ministarburst W43 , 2002, astro-ph/0208519.

[51]  T. K. Sridharan,et al.  High-Mass Proto-Stellar Candidates - II : Density structure from dust continuum and CS emission , 2001, astro-ph/0110370.

[52]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[53]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[54]  William H. Press,et al.  Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation , 1974 .