Reduced order variational multiscale enrichment method for thermo-mechanical problems

This manuscript presents the formulation and implementation of the reduced order variational multiscale enrichment (ROVME) method for thermo-mechanical problems. ROVME is extended to model the inelastic behavior of heterogeneous structures, in which the constituent properties are temperature sensitive. The temperature-dependent coefficient tensors of the reduced order method are approximated in an efficient manner, retaining the computational efficiency of the reduced order model in the presence of spatial/temporal temperature variations. A Newton–Raphson iterative scheme is formulated and implemented for the numerical evaluation of nonlinear system of equations associated with the proposed ROVME method. Numerical verifications are performed to assess the efficiency and accuracy of the proposed computational framework. The results of the verifications reveal that ROVME retains reasonable accuracy and achieves high efficiency in the presence of hermo-mechanical loads.

[1]  Ekkehard Ramm,et al.  Locality constraints within multiscale model for non‐linear material behaviour , 2007 .

[2]  Jacob Aboudi,et al.  A continuum theory for fiber-reinforced elastic-viscoplastic composites , 1982 .

[3]  Hans Petter Langtangen,et al.  Computational Partial Differential Equations - Numerical Methods and Diffpack Programming , 1999, Lecture Notes in Computational Science and Engineering.

[4]  Franco Brezzi,et al.  $b=\int g$ , 1997 .

[5]  J. Chaboche,et al.  Multiscale analysis of SiC/Ti composites , 2004 .

[6]  J. Chaboche,et al.  FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials , 2000 .

[7]  Damijan Markovic,et al.  On micro–macro interface conditions for micro scale based FEM for inelastic behavior of heterogeneous materials , 2004 .

[8]  T. Arbogast Implementation of a Locally Conservative Numerical Subgrid Upscaling Scheme for Two-Phase Darcy Flow , 2002 .

[9]  C. Sun,et al.  A refined global‐local finite element analysis method , 1991 .

[10]  L. Figiel,et al.  Modelling the high-temperature longitudinal fatigue behaviour of metal matrix composites (SiC/Ti-6242): Nonlinear time-dependent matrix behaviour , 2008 .

[11]  John R. Rice,et al.  A Metalgorithm for Adaptive Quadrature , 1975, JACM.

[12]  C. Oskay,et al.  A three-field (displacement–pressure–concentration) formulation for coupled transport–deformation problems , 2014 .

[13]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[14]  Xiang Zhang,et al.  Eigenstrain based reduced order homogenization for polycrystalline materials , 2015 .

[15]  A. Rollett,et al.  Validation of a numerical method based on Fast Fourier Transforms for heterogeneous thermoelastic materials by comparison with analytical solutions , 2014 .

[16]  C. Oskay,et al.  Computational modeling of titanium structures subjected to thermo-chemo-mechanical environment , 2010 .

[17]  Jacob Fish,et al.  Eigendeformation-based reduced order homogenization for failure analysis of heterogeneous materials , 2007 .

[18]  Felix Fritzen,et al.  Reduced basis hybrid computational homogenization based on a mixed incremental formulation , 2013 .

[19]  N. Kikuchi,et al.  Macro and micro scale modeling of thermal residual stresses in metal matrix composite surface layers by the homogenization method , 1997 .

[20]  C. D. Mote Global‐local finite element , 1971 .

[21]  Bernhard A. Schrefler,et al.  Thermo‐mechanical analysis of periodic multiphase materials by a multiscale asymptotic homogenization approach , 2007 .

[22]  Ahmed K. Noor,et al.  Global-local methodologies and their application to nonlinear analysis , 1986 .

[23]  Jacob Fish,et al.  Adaptive global-local refinement strategy based on the interior error estimates of the h-method , 1994 .

[24]  R. Valle,et al.  Local texture measurements in a SiC/Ti composite manufactured by the foil-fibre-foil technique , 2001 .

[25]  J. Reddy Analysis of functionally graded plates , 2000 .

[26]  C. Oskay Variational multiscale enrichment method with mixed boundary conditions for modeling diffusion and deformation problems , 2013 .

[27]  C. Oskay,et al.  Variational multiscale enrichment method with mixed boundary conditions for elasto-viscoplastic problems , 2015 .

[28]  Julien Yvonnet,et al.  The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains , 2007, J. Comput. Phys..

[29]  J. Fish,et al.  Multiscale asymptotic homogenization for multiphysics problems with multiple spatial and temporal scales: a coupled thermo-viscoelastic example problem , 2002 .

[30]  Caglar Oskay,et al.  Reduced order variational multiscale enrichment method for elasto-viscoplastic problems , 2016 .

[31]  Hervé Moulinec,et al.  A numerical method for computing the overall response of nonlinear composites with complex microstructure , 1998, ArXiv.

[32]  A. Muliana Multi-scale framework for the thermo-viscoelastic analyses of polymer composites , 2008 .

[33]  Daniel Rixen,et al.  Domain decomposition techniques for the efficient modeling of brittle heterogeneous materials , 2011 .

[34]  Voronoi Cell Finite Element Model for Thermoelastoplastic Deformation in Random Heterogeneous Media , 1994 .

[35]  C. Duarte,et al.  Analysis and applications of a generalized finite element method with global-local enrichment functions , 2008 .

[36]  G. R. Johnson,et al.  Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures , 1985 .

[37]  Somnath Ghosh,et al.  Voronoi cell finite element model based on micropolar theory of thermoelasticity for heterogeneous materials , 1995 .

[38]  J. N. Reddy,et al.  Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates , 1998 .

[39]  P. O’Hara,et al.  Efficient analysis of transient heat transfer problems exhibiting sharp thermal gradients , 2013 .

[40]  A. Pilchak,et al.  Room temperature fracture processes of a near-α titanium alloy following elevated temperature exposure , 2012, Journal of Materials Science.

[41]  Haowen Liu,et al.  Deformation induced anisotropic responses of Ti–6Al–4V alloy Part II: A strain rate and temperature dependent anisotropic yield criterion , 2012 .

[42]  A. Muliana,et al.  A multi-scale framework for layered composites with thermo-rheologically complex behaviors , 2008 .

[43]  W. Brekelmans,et al.  FE2 computational homogenization for the thermo-mechanical analysis of heterogeneous solids , 2008 .

[44]  Matthew Mosby,et al.  Computational homogenization at extreme scales , 2016 .

[45]  Caglar Oskay,et al.  Variational multiscale enrichment for modeling coupled mechano‐diffusion problems , 2012 .

[46]  J. Michel,et al.  Nonuniform transformation field analysis , 2003 .

[47]  Theodore Nicholas,et al.  Titanium Matrix Composites , 2020 .

[48]  B. Skrotzki,et al.  Mechanical behavior and fatigue damage of a titanium matrix composite reinforced with continuous SiC fibers , 2007 .

[49]  M. Guessasma,et al.  A numerical investigation of effective thermoelastic properties of interconnected alumina/Al composites using FFT and FE approaches , 2016 .

[50]  G. Dvorak Transformation field analysis of inelastic composite materials , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[51]  Emmanuel Roubin,et al.  Reduced order modeling strategies for computational multiscale fracture , 2017 .

[52]  Sandra P. Walker,et al.  Sharp Refractory Composite Leading Edges on Hypersonic Vehicles , 2003 .

[53]  H. Böhm,et al.  A thermo-elasto-plastic constitutive law for inhomogeneous materials based on an incremental Mori–Tanaka approach , 1999 .

[54]  Todd Arbogast,et al.  Analysis of a Two-Scale, Locally Conservative Subgrid Upscaling for Elliptic Problems , 2004, SIAM J. Numer. Anal..

[55]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[56]  Adaptive Approximation , 2013 .

[57]  O. Allix,et al.  Non-intrusive and exact global/local techniques for structural problems with local plasticity , 2009 .