Advanced magnetocaloric materials: What does the future hold?

Recent achievements in the design of robust near room temperature magnetic cooling devices signify paradigm shift in refrigeration, liquefaction and freezing technologies, and call for a much broader base of advanced magnetocaloric materials to support quick materialization of this environmentally friendly, energy efficient technology in a variety of markets. The latest material discoveries are reviewed and current trends in engineering of advanced magnetocaloric compounds have been identified.

[1]  David Jiles,et al.  Permanent magnet array for the magnetic refrigerator , 2002 .

[2]  P. Debye Einige Bemerkungen zur Magnetisierung bei tiefer Temperatur , 1926 .

[3]  S. Gama,et al.  Pressure-induced colossal magnetocaloric effect in MnAs. , 2004, Physical review letters.

[4]  Robert D. Shull,et al.  Reduction of hysteresis losses in the magnetic refrigerant Gd5Ge2Si2 by the addition of iron , 2004, Nature.

[5]  K. Gschneidner,et al.  Massive magnetic-field-induced structural transformation in Gd5Ge4 and the nature of the giant magnetocaloric effect. , 2003, Physical review letters.

[6]  K. Gschneidner,et al.  Description and Performance of a Near-Room Temperature Magnetic Refrigerator , 1998 .

[7]  R. Chahine,et al.  Magnetic measurements: A powerful tool in magnetic refrigerator design , 1995 .

[8]  L. H. Bennett,et al.  Transient response in magnetocaloric regeneration , 2005, IEEE Transactions on Magnetics.

[9]  Kazuhiko Yamada,et al.  Performance of a room-temperature rotary magnetic refrigerator , 2006 .

[10]  W. Giauque A THERMODYNAMIC TREATMENT OF CERTAIN MAGNETIC EFFECTS. A PROPOSED METHOD OF PRODUCING TEMPERATURES CONSIDERABLY BELOW 1° ABSOLUTE , 1927 .

[11]  Vitalij K. Pecharsky,et al.  Magnetocaloric effect from indirect measurements: Magnetization and heat capacity , 1999 .

[12]  K. Gschneidner,et al.  Unusual Magnetic Behavior in Gd5(Si1.5GE2.5) and Gd5(Si2Ge2) , 2000 .

[13]  S. Fujieda,et al.  Itinerant-electron Metamagnetic Transition and Large Magnetocaloric Effects in La(FexSi1-x)13 Compounds and Their Hydrides , 2003 .

[14]  Vitalij K. Pecharsky,et al.  Gd5(SixGe1–x)4: An Extremum Material , 2001 .

[15]  W. A. Steyert Stirling‐cycle rotating magnetic refrigerators and heat engines for use near room temperature , 1978 .

[16]  R. L. Weber,et al.  The Physical Principles of Magnetism , 1967 .

[17]  S. Fujieda,et al.  Thermal transport properties of magnetic refrigerants La(FexSi1−x)13 and their hydrides, and Gd5Si2Ge2 and MnAs , 2004 .

[18]  Carl B. Zimm,et al.  Potential for cost effective magnetocaloric air conditioning systems , 2005 .

[19]  Vitalij K. Pecharsky,et al.  Some common misconceptions concerning magnetic refrigerant materials , 2001 .

[20]  Xavier Bohigas,et al.  Room-temperature magnetic refrigerator using permanent magnets , 2000 .

[21]  Vitalij K. Pecharsky,et al.  GIANT MAGNETOCALORIC EFFECT IN GD5(SI2GE2) , 1997 .

[22]  F. Parker,et al.  Magnetic cooling near Curie temperatures above 300 K , 1984 .

[23]  J. A. Barclay,et al.  The theory of an active magnetic regenerative refrigerator , 1983 .

[24]  K. Gschneidner,et al.  Recent developments in magnetocaloric materials , 2003 .

[25]  K. Gschneidner,et al.  MAGNETIC PHASE TRANSITIONS AND THE MAGNETOTHERMAL PROPERTIES OF GADOLINIUM , 1998 .

[26]  K. Gschneidner,et al.  Thermodynamics of the magnetocaloric effect , 2001 .

[27]  Karl A. Gschneidner,et al.  Magnetocaloric effect and magnetic refrigeration , 1999 .

[28]  C. E. Reid,et al.  Selection of magnetic materials for an active magnetic regenerative refrigerator , 1994 .

[29]  Richard Chahine,et al.  Direct Measurement of the “Giant” Adiabatic Temperature Change in Gd 5 Si 2 Ge 2 , 1999 .

[30]  Geoffrey F. Green,et al.  A Gadolinium-Terbium Active Regenerator , 1990 .

[31]  Kazuaki Fukamichi,et al.  Design and performance of a permanent-magnet rotary refrigerator , 2005 .

[32]  A. Tishin,et al.  The Magnetocaloric Effect and its Applications , 2003 .

[33]  F. Hu,et al.  Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6 , 2001 .

[34]  K. Gschneidner,et al.  Reducing the operational magnetic field in the prototype magnetocaloric system Gd5Ge4 by approaching the single cluster size limit , 2006 .

[35]  K. Gschneidner,et al.  Giant Magnetocaloric Effect in Gd{sub 5}(Si{sub 2}Ge{sub 2}) , 1997 .

[36]  G. V. Brown Magnetic heat pumping near room temperature , 1976 .

[37]  K. Gschneidner,et al.  MAGNETIC-FIELD AND TEMPERATURE DEPENDENCIES OF THE ELECTRICAL RESISTANCE NEAR THE MAGNETIC AND CRYSTALLOGRAPHIC FIRST-ORDER PHASE TRANSITION OF GD5(SI 2GE2) , 1999 .

[38]  K. Ito,et al.  Development of magnetic refrigerator for room temperature application , 2002 .

[39]  V. Pecharsky,et al.  Comment on "Direct measurement of the 'Giant' adiabatic temperature change in Gd5Si2Ge2". , 2000, Physical review letters.

[40]  Vitalij K. Pecharsky,et al.  Electron correlation effects on the magnetostructural transition and magnetocaloric effect inGd5Si2Ge2 , 2006 .

[41]  H. Wada,et al.  Giant magnetocaloric effect of MnAs1−xSbx , 2001 .

[42]  E. Brück,et al.  Developments in magnetocaloric refrigeration , 2005 .

[43]  M. Ibarra,et al.  Pressure enhancement of the giant magnetocaloric effect in Tb5Si2Ge2. , 2004, Physical review letters.