THE INVISIBLES: A DETECTION ALGORITHM TO TRACE THE FAINTEST MILKY WAY SATELLITES

A specialized data-mining algorithm has been developed using wide-field photometry catalogs, enabling systematic and efficient searches for resolved, extremely low surface brightness satellite galaxies in the halo of the Milky Way (MW). Tested and calibrated with the Sloan Digital Sky Survey Data Release 6 (SDSS-DR6) we recover all 15 MW satellites recently detected in SDSS, six known MW/Local Group dSphs in the SDSS footprint, and 19 previously known globular and open clusters. In addition, 30 point-source overdensities have been found that correspond to no cataloged objects. The detection efficiencies of the algorithm have been carefully quantified by simulating more than three million model satellites embedded in star fields typical of those observed in SDSS, covering a wide range of parameters including galaxy distance, scale length, luminosity, and Galactic latitude. We present several parameterizations of these detection limits to facilitate comparison between the observed MW satellite population and predictions. We find that all known satellites would be detected with >90% efficiency over all latitudes spanned by DR6 and that the MW satellite census within DR6 is complete to a magnitude limit of MV ?6.5 and a distance of 300 kpc. Assuming all existing MW satellites contain an appreciable old stellar population and have sizes and luminosities comparable with currently known companions, we predict lower and upper limit totals of 52 and 340 MW dwarf satellites within ~260 kpc if they are uniformly distributed across the sky. This result implies that many MW satellites still remain undetected. Identifying and studying these elusive satellites in future survey data will be fundamental to test the dark matter distribution on kpc scales.

[1]  STScI,et al.  The Tumultuous Lives of Galactic Dwarfs and the Missing Satellites Problem , 2004 .

[2]  Tucson,et al.  Leo V: A Companion of a Companion of the Milky Way Galaxy? , 2008, 0807.2831.

[3]  J. Gunn,et al.  A Photometricity and Extinction Monitor at the Apache Point Observatory , 2001, astro-ph/0106511.

[4]  M. Raddick,et al.  The Fifth Data Release of the Sloan Digital Sky Survey , 2007, 0707.3380.

[5]  Y. Wadadekar,et al.  Submitted to ApJS Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE SIXTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2022 .

[6]  Rachel S. Somerville,et al.  ΛCDM-based Models for the Milky Way and M31. I. Dynamical Models , 2001, astro-ph/0110390.

[7]  S. C. Keller,et al.  The SkyMapper Telescope and The Southern Sky Survey , 2007, Publications of the Astronomical Society of Australia.

[8]  D. Weinberg,et al.  Reionization and the Abundance of Galactic Satellites , 2000, astro-ph/0002214.

[9]  Are great disks defined by satellite galaxies in Milky-Way type halos rare in ΛCDM? , 2005, astro-ph/0501333.

[10]  B. Willman,et al.  Hundreds of Milky Way Satellites? Luminosity Bias in the Satellite Luminosity Function , 2008, 0806.4381.

[11]  et al,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[12]  J. Holtzman,et al.  The Local Group Stellar Populations Archive from the Hubble Space Telescope WFPC2 , 2006 .

[13]  Michael Kuhlen,et al.  Formation and Evolution of Galaxy Dark Matter Halos and Their Substructure , 2007, astro-ph/0703337.

[14]  P. Madau,et al.  EARLY METAL ENRICHMENT BY PREGALACTIC OUTFLOWS : II . SIMULATIONS OF BLOW – AWAY , 2001 .

[15]  Candidate Milky Way satellites in the Galactic halo , 2006, astro-ph/0612173.

[16]  D. Weinberg,et al.  Hierarchical Galaxy Formation and Substructure in the Galaxy’s Stellar Halo , 2000, astro-ph/0007295.

[17]  B. Yanny,et al.  A New Milky Way Dwarf Satellite in Canes Venatici , 2006 .

[18]  Heidelberg,et al.  A Comprehensive Maximum Likelihood Analysis of the Structural Properties of Faint Milky Way Satellites , 2008, 0805.2945.

[19]  George Lake,et al.  Dark Matter Substructure within Galactic Halos , 1999, astro-ph/9907411.

[20]  T. Brainerd Anisotropic Distribution of SDSS Satellite Galaxies: Planar (Not Polar) Alignment , 2004, astro-ph/0408559.

[21]  D. Thompson,et al.  The Structural Properties and Star Formation History of Leo T from Deep LBT Photometry , 2008, 0801.4027.

[22]  Michael Kuhlen,et al.  Redefining the Missing Satellites Problem , 2007, 0704.1817.

[23]  Subaru Telescope,et al.  A Curious Milky Way Satellite in Ursa Major , 2006, astro-ph/0606633.

[24]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[25]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[26]  Sergey E. Koposov,et al.  Accepted for publication in ApJ Preprint typeset using L ATEX style emulateapj v. 02/07/07 THE DISCOVERY OF TWO EXTREMELY LOW LUMINOSITY MILKY WAY GLOBULAR CLUSTERS , 2022 .

[27]  B. Willman,et al.  A Pair of Boötes: A New Milky Way Satellite , 2007, 0705.1378.

[28]  Joshua D. Simon,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE KINEMATICS OF THE ULTRA-FAINT MILKY WAY SATELLITES: SOLVING THE MISSING SATELLITE PROBLEM , 2022 .

[29]  B. Yanny,et al.  Cats and dogs, hair and a hero: A quintet of new milky way companions , 2006 .

[30]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[31]  P. Kroupa,et al.  The Orbital Poles of Milky Way Satellite Galaxies: A Rotationally Supported Disk of Satellites , 2008, 0802.3899.

[32]  Andrew A. West,et al.  A New Milky Way Companion: Unusual Globular Cluster or Extreme Dwarf Satellite? , 2004, astro-ph/0410416.

[33]  Cambridge,et al.  The Luminosity Function of the Milky Way Satellites , 2007, 0706.2687.

[34]  M. Mateo,et al.  Proper Motions of Dwarf Spheroidal Galaxies from Hubble Space Telescope Imaging. IV: Measurement for Sculptor , 2006, astro-ph/0612705.

[35]  Raul Ernesto Gonzalez,et al.  The faint-end of the galaxy luminosity function in groups , 2005, astro-ph/0507144.

[36]  Leicester,et al.  The anisotropic distribution of satellite galaxies , 2007, 0706.1350.

[37]  Francisco Prada,et al.  Where Are the Missing Galactic Satellites? , 1999, astro-ph/9901240.

[38]  Dwarf Galaxy Formation Induced by Galaxy Interactions , 2000, astro-ph/0006006.

[39]  Fnal,et al.  The Field of Streams: Sagittarius and its Siblings , 2006, astro-ph/0605025.

[40]  R. Lupton,et al.  Astrometric Calibration of the Sloan Digital Sky Survey , 2002, astro-ph/0211375.

[41]  N. F. Martin,et al.  A Keck/DEIMOS spectroscopic survey of faint Galactic satellites: searching for the least massive dwarf galaxies , 2007, 0705.4622.

[42]  A. Klypin,et al.  The Anisotropic Distribution of Galactic Satellites , 2005, astro-ph/0502496.

[43]  B. Willman,et al.  The observed and predicted spatial distribution of Milky Way satellite galaxies , 2004 .

[44]  M. Bershady,et al.  SparsePak: A Formatted Fiber Field Unit for the WIYN Telescope Bench Spectrograph. I. Design, Construction, and Calibration , 2004, astro-ph/0403456.

[45]  Jr.,et al.  A New Milky Way Dwarf Galaxy in Ursa Major , 2005, astro-ph/0503552.

[46]  Avon Huxor,et al.  A Trio of New Local Group Galaxies with Extreme Properties , 2008, 0806.3988.

[47]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[48]  B. Yanny,et al.  The Sloan Digital Sky Survey monitor telescope pipeline , 2006 .

[49]  M. Irwin,et al.  An Observational Limit on the Dwarf Galaxy Population of the Local Group , 2006, astro-ph/0610551.

[50]  E. K. Grebel,et al.  Theoretical isochrones in several photometric systems. II. The Sloan Digital Sky Survey ugriz system , 2004 .

[51]  P. Kroupa,et al.  The spatial distribution of the Milky Way and Andromeda satellite galaxies , 2006 .

[52]  B. Willman,et al.  Boötes II ReBoöted: An MMT/MegaCam Study of an Ultrafaint Milky Way Satellite , 2007, 0712.3054.

[53]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[54]  J. Silk,et al.  Dwarf galaxies, cold dark matter, and biased galaxy formation , 1986 .

[55]  Mario Mateo,et al.  DWARF GALAXIES OF THE LOCAL GROUP , 1998, astro-ph/9810070.

[56]  B. Yanny,et al.  A Faint New Milky Way Satellite in Bootes , 2006, astro-ph/0604355.

[57]  Pavel Kroupa,et al.  The Great disk of Milky Way satellites and cosmological sub-structures , 2004, astro-ph/0410421.

[58]  Michael J. Kurtz,et al.  An Adaptive Kernel Approach to Finding dSph Galaxies Around the Milky Way , 1996 .

[59]  An SDSS Survey For Resolved Milky Way Satellite Galaxies. I. Detection Limits , 2001, astro-ph/0111025.

[60]  Rachel S. Somerville,et al.  Can Photoionization Squelching Resolve the Substructure Crisis? , 2001, astro-ph/0107507.

[61]  J. A. Smith,et al.  SDSS data management and photometric quality assessment , 2004 .

[62]  L. Hebb,et al.  Discovery of an Unusual Dwarf Galaxy in the Outskirts of the Milky Way , 2007, astro-ph/0701154.