Multiaxial Fatigue Damage Parameter and Life Prediction without Any Additional Material Constants

Based on the critical plane approach, a simple and efficient multiaxial fatigue damage parameter with no additional material constants is proposed for life prediction under uniaxial/multiaxial proportional and/or non-proportional loadings for titanium alloy TC4 and nickel-based superalloy GH4169. Moreover, two modified Ince-Glinka fatigue damage parameters are put forward and evaluated under different load paths. Results show that the generalized strain amplitude model provides less accurate life predictions in the high cycle life regime and is better for life prediction in the low cycle life regime; however, the generalized strain energy model is relatively better for high cycle life prediction and is conservative for low cycle life prediction under multiaxial loadings. In addition, the Fatemi–Socie model is introduced for model comparison and its additional material parameter k is found to not be a constant and its usage is discussed. Finally, model comparison and prediction error analysis are used to illustrate the superiority of the proposed damage parameter in multiaxial fatigue life prediction of the two aviation alloys under various loadings.

[1]  Kacem Saï,et al.  An investigation of premature fatigue failures of gas turbine blade , 2015 .

[2]  Ayhan Ince,et al.  A mean stress correction model for tensile and compressive mean stress fatigue loadings , 2017 .

[3]  Jing Li,et al.  Fatigue life prediction for some metallic materials under constant amplitude multiaxial loading , 2014 .

[4]  Jiang A fatigue criterion for general multiaxial loading , 2000 .

[5]  Dianyin Hu,et al.  Experimental Investigation of Fatigue Crack Growth Behavior of GH2036 Under Combined High and Low Cycle Fatigue , 2016 .

[6]  Yunhan Liu,et al.  A New Energy-Critical Plane Damage Parameter for Multiaxial Fatigue Life Prediction of Turbine Blades , 2017, Materials.

[7]  Hong-Zhong Huang,et al.  Mean Stress and Ratcheting Corrections in Fatigue Life Prediction of Metals , 2016 .

[8]  Bernd Markert,et al.  Multiaxial fatigue life assessment of sintered porous iron under proportional and non-proportional loadings , 2017 .

[9]  José A.F.O. Correia,et al.  A probabilistic approach for multiaxial fatigue criteria , 2016 .

[10]  S. Stephanov A curvilinear integral method for multiaxial fatigue life computing under non-proportional, arbitrary or random stressing , 1993 .

[11]  B. Moreno,et al.  Study of crack orientation and fatigue life prediction in biaxial fatigue with critical plane models , 2015 .

[12]  De-Guang Shang,et al.  Multiaxial fatigue damage parameter and life prediction under low cycle loading for GH4169 alloy and other structural materials , 2010 .

[13]  A. Carpinteri,et al.  Damage mechanics and Paris regime in fatigue life assessment of metals , 2013 .

[14]  Adam Niesłony,et al.  Fatigue life under non-Gaussian random loading from various models , 2004 .

[15]  Hong-Zhong Huang,et al.  An efficient life prediction methodology for low cycle fatigue–creep based on ductility exhaustion theory , 2013 .

[16]  Jiang Fan,et al.  Probabilistic damage tolerance analysis on turbine disk through experimental data , 2012 .

[17]  Hong-Zhong Huang,et al.  Probabilistic modeling of damage accumulation for time-dependent fatigue reliability analysis of railway axle steels , 2015 .

[18]  Shun-Peng Zhu,et al.  Probabilistic framework for multiaxial LCF assessment under material variability , 2017 .

[19]  Shun-Peng Zhu,et al.  A modified strain energy density exhaustion model for creep–fatigue life prediction , 2016 .

[20]  W. Findley A Theory for the Effect of Mean Stress on Fatigue of Metals Under Combined Torsion and Axial Load or Bending , 1959 .

[21]  Weiwen Peng,et al.  Probabilistic Physics of Failure-based framework for fatigue life prediction of aircraft gas turbine discs under uncertainty , 2016, Reliab. Eng. Syst. Saf..

[22]  Ayhan Ince,et al.  A generalized fatigue damage parameter for multiaxial fatigue life prediction under proportional and non-proportional loadings , 2014 .

[23]  Zhiyong Wu,et al.  Multiaxial fatigue life prediction for titanium alloy TC4 under proportional and nonproportional loading , 2014 .

[24]  Nicole Apetre,et al.  Generalized probabilistic model allowing for various fatigue damage variables , 2017 .

[25]  Dianyin Hu,et al.  Creep-fatigue behavior of turbine disc of superalloy GH720Li at 650 °C and probabilistic creep-fatigue modeling , 2016 .

[26]  Chun H. Wang,et al.  A PATH-INDEPENDENT PARAMETER FOR FATIGUE UNDER PROPORTIONAL AND NON-PROPORTIONAL LOADING , 1993 .

[27]  Dianyin Hu,et al.  Combined fatigue experiments on full scale turbine components , 2013 .

[28]  Kc Liu,et al.  A Method Based on Virtual Strain-Energy Parameters for Multiaxial Fatigue Life Prediction , 1993 .

[29]  Xiaohui Zhao,et al.  Determination of the plastic properties of materials treated by ultrasonic surface rolling process through instrumented indentation , 2014 .

[30]  M. Muñiz‐Calvente,et al.  Probabilistic assessment of fatigue data from shape homologous but different scale specimens. Application to an experimental program , 2017 .

[31]  Ali Fatemi,et al.  Multiaxial fatigue of titanium including step loading and load path alteration and sequence effects , 2010 .

[32]  K. N. Smith A Stress-Strain Function for the Fatigue of Metals , 1970 .

[33]  A. Fatemi,et al.  A CRITICAL PLANE APPROACH TO MULTIAXIAL FATIGUE DAMAGE INCLUDING OUT‐OF‐PHASE LOADING , 1988 .

[34]  Hong-Zhong Huang,et al.  A unified criterion for fatigue–creep life prediction of high temperature components , 2017 .

[35]  A. Fatemi,et al.  Multiaxial fatigue behavior of wrought and additive manufactured Ti-6Al-4V including surface finish effect , 2017 .

[36]  Ali Fatemi,et al.  Multiaxial fatigue: An overview and some approximation models for life estimation , 2011 .

[37]  Luis Reis,et al.  Crack initiation and growth path under multiaxial fatigue loading in structural steels , 2009 .

[38]  Zheng-Yong Yu,et al.  A Combined High and Low Cycle Fatigue Model for Life Prediction of Turbine Blades , 2017, Materials.

[39]  José A.F.O. Correia,et al.  A methodology for probabilistic prediction of fatigue crack initiation taking into account the scale effect , 2017 .

[40]  Ayhan Ince,et al.  Development of Computational Multiaxial Fatigue Modelling For Notched Components , 2012 .

[41]  Ali Fatemi,et al.  Effect of hardness on multiaxial fatigue behaviour and some simple approximations for steels , 2009 .

[42]  Gholam Hossein Farrahi,et al.  Fatigue life estimation of bolt clamped and interference fitted-bolt clamped double shear lap joints using multiaxial fatigue criteria , 2013 .

[43]  Weiwen Peng,et al.  Mean stress effect correction in strain energy-based fatigue life prediction of metals , 2017 .

[44]  Shan-Tung Tu,et al.  Creep-fatigue life prediction and interaction diagram in nickel-based GH4169 superalloy at 650 °C based on cycle-by-cycle concept , 2017 .

[45]  Andrea Carpinteri,et al.  A notch multiaxial-fatigue approach based on damage mechanics , 2012 .

[46]  F. A. Conle,et al.  Multiaxial Stress-Strain Modeling and Fatigue Life Prediction of SAE Axle Shafts , 1993 .

[47]  C. H. Wang,et al.  Multiaxial random load fatigue: life prediction techniques and experiments , 2013 .

[48]  Hong-Zhong Huang,et al.  A generalized energy-based fatigue–creep damage parameter for life prediction of turbine disk alloys , 2012 .

[49]  C. Chu,et al.  Fatigue damage calculation using the critical plane approach , 1995 .