Circuit centric quantum architecture design

[1]  F. Jin,et al.  Gate-error analysis in simulations of quantum computers with transmon qubits , 2017, 1709.06600.

[2]  F. Nori,et al.  Atomic physics and quantum optics using superconducting circuits , 2011, Nature.

[3]  F. Nori,et al.  Quantum Simulation , 2013, Quantum Atom Optics.

[4]  J. Latorre,et al.  Experimental test of Mermin inequalities on a five-qubit quantum computer , 2016, 1605.04220.

[5]  Travis S. Humble,et al.  Establishing the quantum supremacy frontier with a 281 Pflop/s simulation , 2019, Quantum Science and Technology.

[6]  Fei Yan,et al.  A quantum engineer's guide to superconducting qubits , 2019, Applied Physics Reviews.

[7]  F. Nori,et al.  Natural and artificial atoms for quantum computation , 2010, 1002.1871.

[8]  Bikash K. Behera,et al.  Experimental realization of quantum cheque using a five-qubit quantum computer , 2017, Quantum Information Processing.

[9]  Diego Garc'ia-Mart'in,et al.  Five Experimental Tests on the 5-Qubit IBM Quantum Computer , 2017, 1712.05642.

[10]  Elham Kashefi,et al.  Methods for classically simulating noisy networked quantum architectures , 2018, Quantum Science and Technology.

[11]  F. Nori,et al.  Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems , 2012, 1204.2137.

[12]  Bikash K. Behera,et al.  Experimental demonstration of non-local controlled-unitary quantum gates using a five-qubit quantum computer , 2017, Quantum Inf. Process..

[13]  Robert Wille,et al.  An Efficient Methodology for Mapping Quantum Circuits to the IBM QX Architectures , 2017, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[14]  F. Nori,et al.  Microwave photonics with superconducting quantum circuits , 2017, 1707.02046.

[15]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[16]  F. Nori,et al.  Superconducting Circuits and Quantum Information , 2005, quant-ph/0601121.

[17]  V. Kendon,et al.  Protecting quantum memories using coherent parity check codes , 2017, Quantum Science and Technology.

[18]  Bikash K. Behera,et al.  Demonstration of the no-hiding theorem on the 5-Qubit IBM quantum computer in a category-theoretic framework , 2019, Quantum Inf. Process..

[19]  K. Sakata,et al.  Pseudo-2D superconducting quantum computing circuit for the surface code: proposal and preliminary tests , 2019, New Journal of Physics.

[20]  S. Lloyd,et al.  Adiabatic and Hamiltonian computing on a 2D lattice with simple two-qubit interactions , 2015, 1509.01278.