Computational aspects of the symmetric eigenvalue problem of second order tensors
暂无分享,去创建一个
[1] V. Smirnov. Lehrgang der höheren mathematik , 1963 .
[2] W. Schmeidler,et al. W. I. Smirnow, Lehrgang der Höheren Mathematik, Teil V. XIII + 569 S. m. 3 Abb. Berlin 1962. VEB Deutscher Verlag der Wissenschaften. Preis geb. DM 36,— , 1963 .
[3] I N Bronstein,et al. Taschenbuch der Mathematik , 1966 .
[4] H. Schwarz,et al. Numerik symmetrischer Matrizen , 1970 .
[5] Donald E. Carlson,et al. Determination of the stretch and rotation in the polar decomposition of the deformation gradient , 1984 .
[6] T. C. T. Ting,et al. Determination of C1/2, C-1/2 and more general isotropic tensor functions of C , 1985 .
[7] A. Bunse-Gerstner,et al. Numerische lineare Algebra , 1985 .
[8] K. N. Morman. The Generalized Strain Measure With Application to Nonhomogeneous Deformations in Rubber-Like Solids , 1986 .
[9] L. Franca,et al. An algorithm to compute the square root of a 3 × 3 positive definite matrix , 1989 .
[10] William H. Press,et al. Numerical Recipes: FORTRAN , 1988 .
[11] J. C. Simo,et al. Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms , 1991 .
[12] Christian Miehe,et al. Computation of isotropic tensor functions , 1993 .
[13] Christian Miehe,et al. Comparison of two algorithms for the computation of fourth-order isotropic tensor functions , 1998 .
[14] Gilbert Strang,et al. Numerische lineare Algebra , 2003 .