Smoothing polyhedra using implicit algebraic splines

Polyhedron “smoothing” is an efficient construction scheme for generating complex boundary models of solid physical objects. This paper presents efficient algorithms for generating families of curved solid objects with boundaty topology related to an input polyhedron. Individual faces of a polyhedron are replaced by low degree implicit algebraic surface patches with local support. These quintic patches replace the @ contacts of planar facets with C’ continuity along all irtterpatch boundaries. Selection of suitable instances of implicit surfaces as well as local control of the individual surface patches are achieved via simultaneouss interpolation and weighted least-squares approximation.

[1]  Ramon F. Sarraga,et al.  Errata: G1 interpolation of generally unrestricted cubic Bézier curves , 1989, Comput. Aided Geom. Des..

[2]  Jan R. Peters Parametrizing singularly to enclose data points by a smooth parametric surface , 1991 .

[3]  Hiroaki Chiyokura,et al.  Design of solids with free-form surfaces , 1983, SIGGRAPH.

[4]  Etienne Beeker Smoothing of shapes designed with free-form surfaces , 1986 .

[5]  Chanderjit L. Bajaj Electronic skeletons: modeling skeletal structures with piecewise algebraic surfaces (Invited Paper) , 1992, Other Conferences.

[6]  Insung Ihm,et al.  Algebraic surface design with Hermite interpolation , 1992, TOGS.

[7]  Josef Hoschek,et al.  GC 1 continuity conditions between adjacent rectangular and triangular Bézier surface patches , 1989 .

[8]  Thomas W. Sederberg Piecewise algebraic surface patches , 1985, Comput. Aided Geom. Des..

[9]  Joe D. Warren,et al.  Geometric continuity , 1991, Comput. Aided Geom. Des..

[10]  C. Micchelli,et al.  Recent Progress in multivariate splines , 1983 .

[11]  P. Alfeld Scattered data interpolation in three or more variables , 1989 .

[12]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[13]  Lyle Ramshaw,et al.  Béziers and B-splines as Multiaffine Maps , 1988 .

[14]  C. Micchelli,et al.  On multivariate -splines , 1989 .

[15]  Chandrajit L. Bajaj,et al.  Geometric Modeling with Algebraic Surfaces , 1988, IMA Conference on the Mathematics of Surfaces.

[16]  J. Semple,et al.  Introduction to Algebraic Geometry , 1949 .

[17]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[18]  Hans-Peter Seidel,et al.  A new multiaffine approach to B-splines , 1989, Comput. Aided Geom. Des..

[19]  Joe Warren,et al.  Approximation of dense scattered data using algebraic surfaces , 1991, Proceedings of the Twenty-Fourth Annual Hawaii International Conference on System Sciences.

[20]  Malcolm A. Sabin,et al.  Piecewise Quadratic Approximations on Triangles , 1977, TOMS.

[21]  Vinod Anupam,et al.  The SHASTRA Distributed and Collaborative Geometric Design Environment , 1991 .

[22]  J. Peters Smooth interpolation of a mesh of curves , 1991 .

[23]  Malcolm A. Sabin,et al.  High accuracy geometric Hermite interpolation , 1987, Comput. Aided Geom. Des..

[24]  Insung Ihm,et al.  On surface design with implicit algebraic surfaces , 1992 .

[25]  Carlo H. Séquin,et al.  Local surface interpolation with Bézier patches , 1987, Comput. Aided Geom. Des..

[26]  H. Pottmann,et al.  Curvature continuous triangular interpolants , 1989 .

[27]  R. J. Walker Algebraic curves , 1950 .

[28]  Jörg Peters,et al.  Local cubic and bicubic C1 surface interpolation with linearly varying boundary normal , 1990, Comput. Aided Geom. Des..

[29]  Gary J. Herron,et al.  Smooth closed surfaces with discrete triangular interpolants , 1985, Comput. Aided Geom. Des..

[30]  J. A. Gregory,et al.  A C1 triangular interpolation patch for computer-aided geometric design , 1980 .

[31]  Gene H. Golub,et al.  Matrix computations , 1983 .

[32]  Gerald Farin,et al.  Triangular Bernstein-Bézier patches , 1986, Comput. Aided Geom. Des..