Divergence of fMRI and neural signals in V1 during perceptual suppression in the awake monkey

[1]  Claudine Joëlle Gauthier,et al.  BOLD-Perfusion Coupling during Monocular and Binocular Stimulation , 2008, Int. J. Biomed. Imaging.

[2]  D. Leopold,et al.  Neuronal correlates of spontaneous fluctuations in fMRI signals in monkey visual cortex: Implications for functional connectivity at rest , 2008, Human brain mapping.

[3]  R. Freeman,et al.  Neurometabolic coupling in cerebral cortex reflects synaptic more than spiking activity , 2007, Nature Neuroscience.

[4]  I. Fried,et al.  Coupling between Neuronal Firing Rate, Gamma LFP, and BOLD fMRI Is Related to Interneuronal Correlations , 2007, Current Biology.

[5]  Jude F. Mitchell,et al.  Differential Attention-Dependent Response Modulation across Cell Classes in Macaque Visual Area V4 , 2007, Neuron.

[6]  David A. Leopold,et al.  Context-dependent perceptual modulation of single neurons in primate visual cortex , 2007, Proceedings of the National Academy of Sciences.

[7]  N. Logothetis,et al.  Local field potential reflects perceptual suppression in monkey visual cortex , 2006, Proceedings of the National Academy of Sciences.

[8]  R. Blake,et al.  Neural bases of binocular rivalry , 2006, Trends in Cognitive Sciences.

[9]  Sabine Kastner,et al.  Neural correlates of binocular rivalry in the human lateral geniculate nucleus , 2005, Nature Neuroscience.

[10]  R. Deichmann,et al.  Eye-specific effects of binocular rivalry in the human lateral geniculate nucleus , 2005, Nature.

[11]  A. Mitz A liquid-delivery device that provides precise reward control for neurophysiological and behavioral experiments , 2005, Journal of Neuroscience Methods.

[12]  W. Singer,et al.  Hemodynamic Signals Correlate Tightly with Synchronized Gamma Oscillations , 2005, Science.

[13]  I. Fried,et al.  Coupling Between Neuronal Firing, Field Potentials, and fMRI in Human Auditory Cortex , 2005, Science.

[14]  G. Rees,et al.  Predicting the Stream of Consciousness from Activity in Human Visual Cortex , 2005, Current Biology.

[15]  David A. Leopold,et al.  Binocular rivalry and the illusion of monocular vision , 2004 .

[16]  N. Logothetis,et al.  Neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging , 2004 .

[17]  C. Iadecola Neurovascular regulation in the normal brain and in Alzheimer's disease , 2004, Nature Reviews Neuroscience.

[18]  R. Eckhorn,et al.  Perception-related modulations of local field potential power and coherence in primary visual cortex of awake monkey during binocular rivalry. , 2004, Cerebral cortex.

[19]  David A. Leopold,et al.  Generalized Flash Suppression of Salient Visual Targets , 2003, Neuron.

[20]  N. Logothetis The Underpinnings of the BOLD Functional Magnetic Resonance Imaging Signal , 2003, The Journal of Neuroscience.

[21]  N. Logothetis,et al.  Very slow activity fluctuations in monkey visual cortex: implications for functional brain imaging. , 2003, Cerebral cortex.

[22]  Frank Tong,et al.  Cognitive neuroscience: Primary visual cortex and visual awareness , 2003, Nature Reviews Neuroscience.

[23]  R. Blake,et al.  V1 activity is reduced during binocular rivalry. , 2002, Journal of vision.

[24]  N. Logothetis The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[25]  Dov Sagi,et al.  Motion-induced blindness in normal observers , 2001, Nature.

[26]  Stephen A. Engel,et al.  Interocular rivalry revealed in the human cortical blind-spot representation , 2001, Nature.

[27]  H. Spekreijse,et al.  Two distinct modes of sensory processing observed in monkey primary visual cortex (V1) , 2001, Nature Neuroscience.

[28]  D. Heeger,et al.  Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry , 2000, Nature Neuroscience.

[29]  Pieter R Roelfsema,et al.  The role of primary visual cortex (V1) in visual awareness , 2000, Vision Research.

[30]  C. Gilbert,et al.  Attention and primary visual cortex. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[31]  R W Cox,et al.  AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. , 1996, Computers and biomedical research, an international journal.

[32]  N. Logothetis,et al.  Activity changes in early visual cortex reflect monkeys' percepts during binocular rivalry , 1996, Nature.

[33]  C. Koch,et al.  Are we aware of neural activity in primary visual cortex? , 1995, Nature.

[34]  R Gruetter,et al.  Automatic, localized in Vivo adjustment of all first‐and second‐order shim coils , 1993, Magnetic resonance in medicine.

[35]  N. Logothetis,et al.  Neuronal correlates of subjective visual perception. , 1989, Science.

[36]  Jeremy M. Wolfe,et al.  Reversing ocular dominance and suppression in a single flash , 1984, Vision Research.

[37]  B. Richmond,et al.  Implantation of magnetic search coils for measurement of eye position: An improved method , 1980, Vision Research.

[38]  P. Mansfield Multi-planar image formation using NMR spin echoes , 1977 .

[39]  Randolph Blake,et al.  Traveling waves of activity in primary visual cortex during binocular rivalry , 2005, Nature Neuroscience.

[40]  N. Logothetis,et al.  Visual competition , 2002, Nature Reviews Neuroscience.

[41]  R. K. Simpson Nature Neuroscience , 2022 .

[42]  J. Hell,et al.  Motion-induced blindness in normal observers , 2022 .