Gauss, Kalman and advances in recursive parameter estimation

The paper considers how the Kalman filter has influenced the development of recursive parameter estimation since the publication of Rudolf Kalman's seminal article in 1960. It will present a partial review of developments over the past half century and provide a tutorial introduction to the refined instrumental variable approach to the optimal recursive estimation of parameters in both discrete and continuous-time transfer function models. The paper concludes with a case study that shows how recursive parameter estimation and the Kalman filter can be combined in the design and development of a real‐time adaptive forecasting and data assimilation system for flow in river systems. Copyright (C) 2010 John Wiley & Sons, Ltd.

[1]  Kwan Wong,et al.  Identification of linear discrete time systems using the instrumental variable method , 1967, IEEE Transactions on Automatic Control.

[2]  H. Kushner Dynamical equations for optimal nonlinear filtering , 1967 .

[3]  Peter C Young,et al.  Advances in real–time flood forecasting , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[4]  John B. Moore,et al.  Discrete-time fixed-lag smoothing algorithms , 1973 .

[5]  D. A. Pierce Least squares estimation in dynamic-disturbance time series models , 1972 .

[6]  P. Young Some observations on instrumental variable methods of time-series analysis , 1976 .

[7]  Kuolin Hsu,et al.  Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter , 2005 .

[8]  M. B. Beck,et al.  On the development and application of a continuous-discrete recursive prediction error algorithm. , 2004, Mathematical biosciences.

[9]  Peter C. Young,et al.  Computationally efficient flood water level prediction (with uncertainty). , 2009 .

[10]  R. L. Kashyap,et al.  Real time recursive prediction of river flows , 1973 .

[11]  R. Kopp,et al.  LINEAR REGRESSION APPLIED TO SYSTEM IDENTIFICATION FOR ADAPTIVE CONTROL SYSTEMS , 1963 .

[12]  P. Young,et al.  Dynamic harmonic regression. , 1999 .

[13]  C. Diks,et al.  Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation , 2005 .

[14]  Fred C. Schweppe,et al.  Evaluation of likelihood functions for Gaussian signals , 1965, IEEE Trans. Inf. Theory.

[15]  P. Young,et al.  Refined Instrumental Variable Identification of Continuous-time Hybrid Box-Jenkins Models , 2008 .

[16]  Peter C. Young,et al.  The refined instrumental variable method , 2008 .

[17]  Dong-Jun Seo,et al.  Real-Time Variational Assimilation of Hydrologic and Hydrometeorological Data into Operational Hydrologic Forecasting , 2003 .

[18]  P. Young,et al.  Refined instrumental variable methods of recursive time-series analysis Part III. Extensions , 1980 .

[19]  Dong Jun Seo,et al.  Automatic state updating for operational streamflow forecasting via variational data assimilation , 2009 .

[20]  Peter C. Young,et al.  The data-based mechanistic approach to the modelling, forecasting and control of environmental systems , 2006, Annu. Rev. Control..

[21]  Diego J. Pedregal,et al.  Recursive Fixed Interval Smoothing and the Evaluation Of Lidar Measurements: A Comment On The Paper By Holst, Hössjer, Björklund, Ragnarsson And Edner. , 1996 .

[22]  Peter C. Young,et al.  Top‐down and data‐based mechanistic modelling of rainfall–flow dynamics at the catchment scale , 2003 .

[23]  R. Plackett Some theorems in least squares. , 1950, Biometrika.

[24]  Peter Young A second generation adaptive autostabilization system for airborne vehicles , 1981, Autom..

[25]  L. Mcbride,et al.  A technique for the identification of linear systems , 1965 .

[26]  Diego J. Pedregal,et al.  Environmental time series analysis and forecasting with the Captain toolbox , 2007, Environ. Model. Softw..

[27]  Soroosh Sorooshian,et al.  Dual state-parameter estimation of hydrological models using ensemble Kalman filter , 2005 .

[28]  Y. Ho On the stochastic approximation method and optimal filtering theory , 1963 .

[29]  Peter C. Young,et al.  Data-based mechanistic modelling of environmental, ecological, economic and engineering systems. , 1998 .

[30]  P. Young,et al.  Refined instrumental variable methods of recursive time-series analysis Part I. Single input, single output systems , 1979 .

[31]  Andrew Harvey,et al.  A unified view of statistical forecasting procedures , 1984 .

[32]  P. Young An instrumental variable method for real-time identification of a noisy process , 1970 .

[33]  T. Söderström,et al.  The Steiglitz-McBride identification algorithm revisited--Convergence analysis and accuracy aspects , 1981 .

[34]  P. Young,et al.  Multi-state dependent parameter model identification and estimation for nonlinear dynamic systems , 2010 .

[35]  P. Young,et al.  Data assimilation and adaptive forecasting of water levels in the river Severn catchment, United Kingdom , 2006 .

[36]  P. Young,et al.  8 Recursive identification, estimation and control , 1985 .

[37]  P. Young,et al.  Refined instrumental variable methods of recursive time-series analysis Part II. Multivariable systems , 1979 .

[38]  Hugh F. Durrant-Whyte,et al.  A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..

[39]  P. Young,et al.  Time variable and state dependent modelling of non-stationary and nonlinear time series , 1993 .

[40]  Peter C. Young,et al.  An optimal instrumental variable approach for identifying hybrid continuous-time Box-Jenkins models , 2006 .

[41]  Peter C. Young,et al.  Recursive estimation and forecasting of non‐stationary time series , 1990 .

[42]  Peter C. Young,et al.  The determination of the parameters of a dynamic process , 1965 .

[43]  Neil McIntyre,et al.  Towards reduced uncertainty in conceptual rainfall‐runoff modelling: dynamic identifiability analysis , 2003 .

[44]  Genshiro Kitagawa,et al.  A NONSTATIONARY TIME SERIES MODEL AND ITS FITTING BY A RECURSIVE FILTER , 1981 .

[45]  P. Young AN INSTRUMENTAL VARIABLE APPROACH TO ARMA MODEL IDENTIFICATION AND ESTIMATION , 2006 .

[46]  Anthony J. Jakeman,et al.  Joint parameter/state estimation , 1979 .

[47]  Lennart Ljung,et al.  Initialisation aspects for subspace and output-error identification methods , 2003, 2003 European Control Conference (ECC).

[48]  Peter C. Young Self-adaptive Kalman filter , 1979 .

[49]  Peter C. Young,et al.  The Identification and Estimation of Nonlinear Stochastic Systems , 2001 .

[50]  K. F. Gauss,et al.  Theoria combinationis observationum erroribus minimis obnoxiae , 1823 .

[51]  P. Young,et al.  A systems approach to recursive economic forecasting and seasonal adjustment , 1989 .

[52]  Peter C. Young,et al.  Reduced order emulation of distributed hydraulic models , 2009 .

[53]  P. Young,et al.  Identification of non-linear stochastic systems by state dependent parameter estimation , 2001 .

[54]  David Q. Mayne,et al.  Optimal Non-stationary Estimation of the Parameters of a Linear System with Gaussian Inputs † , 1963 .

[55]  Frederick Adams Woods,et al.  THE NON-INHERITANCE OF SEX IN MAN , 1906 .

[56]  M. Trosset,et al.  Bayesian recursive parameter estimation for hydrologic models , 2001 .

[57]  E. Hannan,et al.  Recursive estimation of mixed autoregressive-moving average order , 1982 .