Conservative discretization of Coriolis force in a finite volume framework

In this article we are interested in the problem of numerical simulations for a shallow fluid flow in a rotating system. This problem is closely related to climate or meteorological simulations. Our purpose is to introduce a new finite volume technique which allows us to guarantee conservation of linear momentum in an inertial frame of reference. Furthermore, we show that this method introduces a new discrete Coriolis term which is based on the interface mass fluxes instead of on straightforward cell-centered evaluation of the source term. Some numerical tests exhibit that this approach significantly reduces the numerical diffusion and is particularly interesting when considering nonisotropic meshes or long time simulations.

[1]  Emmanuel Audusse,et al.  A Fast and Stable Well-Balanced Scheme with Hydrostatic Reconstruction for Shallow Water Flows , 2004, SIAM J. Sci. Comput..

[2]  阪本 敏浩,et al.  『Introduction to PDEs and Waves for the Atmosphere and Ocean(Courant Lecture Notes, Volume 9)』, Andrew Majda著, American Mathematical Society刊, 2003年1月発行, 234頁, ペーパーバック, $40.95, ISBN:0-8218-2954-8 , 2004 .

[3]  Paul Andries Zegeling,et al.  Moving-grid methods for time-dependent partial differential equations , 1993 .

[4]  John Thuburn,et al.  Some conservation issues for the dynamical cores of NWP and climate models , 2008, J. Comput. Phys..

[5]  F. Bouchut Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws: and Well-Balanced Schemes for Sources , 2005 .

[6]  Randall J. LeVeque,et al.  Balancing Source Terms and Flux Gradients in High-Resolution Godunov Methods , 1998 .

[7]  Klaus M. Weickmann,et al.  Angular momentum in the global atmospheric circulation , 2007 .

[8]  L. Polvani,et al.  Time-Dependent Fully Nonlinear Geostrophic Adjustment , 1996 .

[9]  Rupert Klein,et al.  Well balanced finite volume methods for nearly hydrostatic flows , 2004 .

[10]  C. Rossby,et al.  On the Mutual Adjustment of Pressure and Velocity Distributions in Certain Simple Current Systems, II , 1938 .

[11]  V. Zeitlin,et al.  Nonlinear dynamics of rotating shallow water : methods and advances , 2007 .

[12]  J. Greenberg,et al.  A well-balanced scheme for the numerical processing of source terms in hyperbolic equations , 1996 .

[13]  Vladimir Zeitlin,et al.  Frontal geostrophic adjustment and nonlinear wave phenomena in one-dimensional rotating shallow water. Part 2. High-resolution numerical simulations , 2004, Journal of Fluid Mechanics.

[14]  Patrick Jenny,et al.  Rankine-Hugoniot-Riemann Solver Considering Source Terms and Multidimensional Effects , 1998 .

[15]  Andrew J. Majda,et al.  A non-oscillatory balanced scheme for an idealized tropical climate model , 2005 .

[16]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[17]  Vladimir Zeitlin,et al.  Nonlinear adjustment of a front over escarpment , 2008 .

[18]  G. Coriolis,et al.  Sur les équations du mouvement relatif des systèmes de corps , 1835 .

[19]  M. Münch,et al.  MOLOCH - Ein Strömungsverfahren für inkompressible Strömungen - Technische Referenz , 2008 .