Functionalization of cotton fabrics with corona/air RF plasma and colloidal TiO2 nanoparticles

This study discusses the possibility of using a corona discharge at atmospheric pressure and air RF plasma at low pressure for the cotton fibre activation prior to deposition of colloidal TiO2 nanoparticles in order to enhance antibacterial, UV protective and self-cleaning properties. X-ray photoelectron spectroscopy (XPS) analysis confirmed the presence of TiO2 nanoparticles on the surface of cotton fibres. XPS elemental mapping indicated that TiO2 nanoparticles were more evenly distributed across the surface of untreated and corona pre-treated cotton fabrics in comparison with RF plasma pre-treated fabric. Atomic absorption spectroscopy measurements revealed that the equivalent total content of TiO2 in the cotton fabrics pre-treated by corona and RF plasma was 31% higher than in the fabric that did not undergo any treatment prior to loading of TiO2 nanoparticles. In order to achieve maximum bacteria (Gram-negative bacteria Escherichia coli) reduction, untreated cotton fabric had to be loaded with colloidal TiO2 nanoparticles twice, but only once following corona or RF plasma pre-treatment. Deposition of TiO2 nanoparticles onto cotton fabrics provided maximum UV protective rating of 50+. Extraordinary photocatalytic activity of TiO2 nanoparticles deposited onto cotton fabrics was proved by self-cleaning of blueberry juice stains and photodegradation of methylene blue in aqueous solution under UV illumination.

[1]  J. Kiwi,et al.  Self-cleaning of modified cotton textiles by TiO2 at low temperatures under daylight irradiation , 2005 .

[2]  J. Xin,et al.  Functionalizing Polyester Fiber with a Self-Cleaning Property Using Anatase TiO2 and Low-Temperature Plasma Treatment , 2007 .

[3]  Mingce Long,et al.  Synthesis and characterization of self-cleaning cotton fabrics modified by TiO2 through a facile approach , 2009 .

[4]  W. S. Tung,et al.  Photocatalytic self-cleaning keratins: A feasibility study. , 2009, Acta biomaterialia.

[5]  Leena‐Sisko Johansson,et al.  Analysis of the oxidation of cellulose fibres by titration and XPS , 2005 .

[6]  K. Johansson Plasma modification of natural cellulosic fibres : Chapter 10 , 2007 .

[7]  Paul Kiekens,et al.  Non-thermal plasma treatment of textiles , 2008 .

[8]  C. Pulgarin,et al.  Self-cleaning modified TiO2 cotton pretreated by UVC-light (185 nm) and RF- plasma in vacuum and also under atmospheric pressure. , 2009 .

[9]  George K Stylios,et al.  Effect of Low Temperature Plasma Treatment on the Scouring and Dyeing of Natural Fabrics , 2004 .

[10]  Han-Joo Lee,et al.  Antibacterial effect of nanosized silver colloidal solution on textile fabrics , 2003 .

[11]  Petar Jovančić,et al.  Plasma-induced Decolorization of Indigo-dyed Denim Fabrics Related to Mechanical Properties and Fiber Surface Morphology , 2009 .

[12]  J. Niemantsverdriet,et al.  Novel method for preparing cellulose model surfaces by spin coating , 2003 .

[13]  Chinkap Chung,et al.  Characterization of cotton fabric scouring by FT-IR ATR spectroscopy , 2004 .

[14]  J. Kiwi,et al.  Self-cleaning cotton textiles surfaces modified by photoactive SiO2/TiO2 coating , 2006 .

[15]  M. Ueda,et al.  Physico–chemical modifications of fibres and their effect on coloration and finishing , 2008 .

[16]  John H. Xin,et al.  Surface functionalization of cellulose fibers with titanium dioxide nanoparticles and their combined bactericidal activities , 2005 .

[17]  Leena-Sisko Johansson,et al.  Reproducible XPS on biopolymers: cellulose studies , 2004 .

[18]  J. Kiwi,et al.  Synthesis, activity and characterization of textiles showing self-cleaning activity under daylight irradiation , 2007 .

[19]  Petar Jovančić,et al.  Functionalization of polyester fabrics with alginates and TiO2 nanoparticles , 2010 .

[20]  J. Kiwi,et al.  Self-cleaning of wool-polyamide and polyester textiles by TiO2-rutile modification under daylight irradiation at ambient temperature , 2005 .

[21]  Christophe Leys,et al.  Incorporation of poly(N-isopropylacrylamide)/chitosan microgel onto plasma functionalized cotton fibre surface , 2009 .

[22]  B. Orel,et al.  Biodegradation of silver functionalised cellulose fibres , 2010 .

[23]  J. Xin,et al.  A New Approach to UV-Blocking Treatment for Cotton Fabrics , 2004 .

[24]  J. Nedeljković,et al.  Multifunctional properties of polyester fabrics modified by corona discharge/air RF plasma and colloidal TiO2 nanoparticles , 2011 .

[25]  J. Nedeljković,et al.  Novel properties of PES fabrics modified by corona discharge and colloidal TiO2 nanoparticles , 2011 .

[26]  C. Pulgarin,et al.  Innovative self-cleaning and bactericide textiles , 2010 .

[27]  George K Stylios,et al.  Fabric surface properties affected by low temperature plasma treatment , 2006 .

[28]  R. Shishoo,et al.  Plasma technologies for textiles , 2007 .

[29]  J. Xin,et al.  Low Temperature Sol-Gel Processed Photocatalytic Titania Coating , 2004 .

[30]  R. Paul,et al.  Nano-cotton Fabrics with High Ultraviolet Protection , 2010 .

[31]  G. Spoto,et al.  PHOTOACTIVE TIO2 FILMS ON CELLULOSE FIBRES: SYNTHESIS AND CHARACTERIZATION , 2007 .

[32]  E. Özdoǧan,et al.  Improvements of surface functionality of cotton fibers by atmospheric plasma treatment , 2008 .

[33]  Mahmood Ghoranneviss,et al.  Decolorization of Denim Fabrics with Cold Plasmas in the Presence of Magnetic Fields , 2006 .

[34]  Y. Qiu,et al.  Effect of Atmospheric Plasma Treatment on Desizing of PVA on Cotton , 2003 .

[35]  C. Yuen,et al.  Influence of low-temperature plasma on the ink-jet-printed cotton fabric , 2007 .

[36]  H. Thomas 9 – Plasma modification of wool , 2007 .

[37]  Vincent Nierstrasz,et al.  XPS and contact angle study of cotton surface oxidation by catalytic bleaching , 2007 .

[38]  K. N. Pandiyaraj,et al.  Non-thermal plasma treatment for hydrophilicity improvement of grey cotton fabrics , 2008 .

[39]  J. Xin,et al.  Self-cleaning cotton , 2006 .