Combined SPICE-FEM analysis of electrothermal effects in InGaP/GaAs HBT devices and arrays for handset applications

In this paper, an approach based on the combination of a numerical tool supported by an in-house routine and a circuit simulator is used to examine the dc electrothermal behavior of (i) test devices for experimental characterization and (ii) arrays for output stages of power amplifiers in InGaP/GaAs HBT technology. The thermally-induced distortion in I-V curves is explained, and the limits of the safe operating regions are identified in a wide range of biasing conditions.

[1]  Vincenzo d'Alessandro,et al.  Evaluation of thermal balancing techniques in InGaP/GaAs HBT power arrays for wireless handset power amplifiers , 2013, Microelectron. Reliab..

[2]  V. d'Alessandro,et al.  Restabilizing mechanisms after the onset of thermal instability in bipolar transistors , 2006, IEEE Transactions on Electron Devices.

[3]  Vincenzo d'Alessandro,et al.  Influence of Scaling and Emitter Layout on the Thermal Behavior of Toward-THz SiGe:C HBTs , 2014, IEEE Transactions on Electron Devices.

[4]  W. Liu,et al.  The use of base ballasting to prevent the collapse of current gain in AlGaAs/GaAs heterojunction bipolar transistors , 1996 .

[5]  S. Nelson,et al.  Current gain collapse in microwave multifinger heterojunction bipolar transistors operated at very high power densities , 1993 .

[6]  Anjan Chakravorty,et al.  Compact Hierarchical Bipolar Transistor Modeling With HiCUM , 2010, International Series on Advances in Solid State Electronics and Technology.

[7]  E. Jarvinen,et al.  Bias circuits for GaAs HBT power amplifiers , 2001, 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No.01CH37157).

[8]  V. d'Alessandro,et al.  A back-wafer contacted silicon-on-glass integrated bipolar process. Part II. A novel analysis of thermal breakdown , 2004, IEEE Transactions on Electron Devices.

[9]  V. d'Alessandro,et al.  Analysis of the Bipolar Current Mirror Including Electrothermal and Avalanche Effects , 2009, IEEE Transactions on Electron Devices.

[10]  Wen-Chau Liu,et al.  Thermal coupling in 2-finger heterojunction bipolar transistors , 1995 .

[11]  V. d’Alessandro,et al.  Analysis of Electrothermal Effects in Bipolar Differential Pairs , 2011, IEEE Transactions on Electron Devices.

[12]  B. Li,et al.  Nonlinear Transistor Model Parameter Extraction Techniques: Practical statistical simulation for efficient circuit design , 2011 .

[13]  Alessandro Magnani,et al.  Simulation comparison of InGaP/GaAs HBT thermal performance in wire-bonding and flip-chip technologies , 2017, Microelectron. Reliab..

[14]  D. Celi,et al.  Impact of layout and technology parameters on the thermal resistance of SiGe:C HBTs , 2010, 2010 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM).

[15]  M. Fresina,et al.  Trends in GaAs HBTs for wireless and RF , 2011, 2011 IEEE Bipolar/BiCMOS Circuits and Technology Meeting.

[16]  Niccolò Rinaldi,et al.  Avalanche multiplication and pinch-in models for simulating electrical instability effects in SiGe HBTs , 2010, Microelectron. Reliab..

[17]  Mau-Chung Frank Chang,et al.  Thermal design and simulation of bipolar integrated circuits , 1992 .

[18]  V. d'Alessandro,et al.  Theory of electrothermal behavior of bipolar transistors: part III-impact ionization , 2006, IEEE Transactions on Electron Devices.

[19]  S. L. Miller Ionization Rates for Holes and Electrons in Silicon , 1957 .

[20]  V. d’Alessandro,et al.  Thermal Design of Multifinger Bipolar Transistors , 2010, IEEE Transactions on Electron Devices.

[21]  J. Sitch,et al.  A new large signal HBT model , 1994 .

[22]  Rudiger Quay,et al.  Analysis and Simulation of Heterostructure Devices , 2004 .

[23]  V. d'Alessandro,et al.  Analysis of the Influence of Layout and Technology Parameters on the Thermal Impedance of GaAs HBT/BiFET Using a Highly-Efficient Tool , 2014, 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[24]  U. Seiler,et al.  Thermally triggered collapse of collector current in power heterojunction bipolar transistors , 1993, 1993 Proceedings of IEEE Bipolar/BiCMOS Circuits and Technology Meeting.

[25]  Wen-Chau Liu,et al.  The collapse of current gain in multi-finger heterojunction bipolar transistors: its substrate temperature dependence, instability criteria, and modeling , 1994 .

[26]  P.M. Asbeck,et al.  Heating effects on the accuracy of HBT voltage comparators , 1987, IEEE Transactions on Electron Devices.

[27]  V. d’Alessandro,et al.  Experimental DC Extraction of the Base Resistance of Bipolar Transistors: Application to SiGe:C HBTs , 2016, IEEE Transactions on Electron Devices.

[28]  V. d’Alessandro,et al.  Analysis of Electrothermal and Impact-Ionization Effects in Bipolar Cascode Amplifiers , 2018, IEEE Transactions on Electron Devices.

[29]  C. Popescu Selfheating and thermal runaway phenomena in semiconductor devices , 1970 .

[30]  V. d'Alessandro,et al.  Theory of electrothermal behavior of bipolar transistors: part II-two-finger devices , 2005, IEEE Transactions on Electron Devices.

[31]  V. d'Alessandro,et al.  Theory of electrothermal behavior of bipolar transistors: Part I -single-finger devices , 2005, IEEE Transactions on Electron Devices.

[33]  V. d'Alessandro,et al.  Influence of Concurrent Electrothermal and Avalanche Effects on the Safe Operating Area of Multifinger Bipolar Transistors , 2009, IEEE Transactions on Electron Devices.

[34]  P. R. Bryant,et al.  Multiple equilibrium points and their significance in the second breakdown of bipolar transistors , 1981 .