Terahertz superconductor metamaterial

We characterize the behavior of split ring resonators made up of high transition temperature yttrium barium copper oxide superconductor using terahertz time-domain spectroscopy measurements and numerical simulations. The superconductor metamaterial is found to show a remarkable change in the transmission spectra at the fundamental inductive-capacitive resonance as the temperature dips below the critical transition temperature. This resonance switching effect is normally absent in traditional metamaterials made up of regular metals. The temperature-dependent resonance behavior of the superconducting metamaterial would lead to development of low loss terahertz switches at cryogenic temperatures.

[1]  K. Müller,et al.  Possible highTc superconductivity in the Ba−La−Cu−O system , 1986 .

[2]  Jianqiang Gu,et al.  Increased frequency shifts in high aspect ratio terahertz split ring resonators , 2009 .

[3]  Martin Koch,et al.  Thin-film sensing with planar asymmetric metamaterial resonators , 2008 .

[4]  Christian Debus,et al.  Frequency selective surfaces for high sensitivity terahertz sensing , 2007, 2104.05462.

[5]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[6]  D. Grischkowsky,et al.  Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors , 1990 .

[7]  Thomas Koschny,et al.  Magnetic and electric excitations in split ring resonators. , 2007, Optics express.

[8]  A. K. Azad,et al.  Terahertz metamaterial with asymmetric transmission , 2009, 0908.2524.

[9]  Carsten Rockstuhl,et al.  On the reinterpretation of resonances in split-ring-resonators at normal incidence. , 2006, Optics express.

[10]  Willie J Padilla,et al.  A metamaterial solid-state terahertz phase modulator , 2009 .

[11]  M. Wegener,et al.  Magnetic Response of Metamaterials at 100 Terahertz , 2004, Science.

[12]  N I Zheludev,et al.  Temperature control of Fano resonances and transmission in superconducting metamaterials. , 2010, Optics express.

[13]  Weili Zhang,et al.  Optically thin terahertz metamaterials. , 2008, Optics express.

[14]  Weili Zhang,et al.  Transmission properties of terahertz pulses through subwavelength double split-ring resonators. , 2006, Optics letters.

[15]  H. London Phase-equilibrium of supraconductors in a magnetic field , 1935 .

[16]  Willie J Padilla,et al.  Dynamical electric and magnetic metamaterial response at terahertz frequencies , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[17]  F. Lederer,et al.  Analogue of electromagnetically induced transparency in a terahertz metamaterial , 2009, 0907.1937.

[18]  Xiang Zhang,et al.  Negative refractive index in chiral metamaterials. , 2009, Physical review letters.

[19]  Jan G. Korvink,et al.  Terahertz metamaterials fabricated by inkjet printing , 2009 .

[20]  Carsten Rockstuhl,et al.  Cryogenic temperatures as a path toward high-Q terahertz metamaterials , 2010 .

[21]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[22]  F. Lederer,et al.  Coupling between a dark and a bright eigenmode in a terahertz metamaterial , 2009, 0901.0365.

[23]  Weili Zhang,et al.  Effect of metal permittivity on resonant properties of terahertz metamaterials. , 2008, Optics letters.

[24]  Igal Brener,et al.  Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations. , 2008, Optics express.

[25]  David R. Smith,et al.  Broadband Ground-Plane Cloak , 2009, Science.