Tectonics of the Outer Planet Satellites

Tectonic features on the satellites of the outer planets range from the familiar, such as clearly recognizable graben on many satellites, to the bizarre, such as the ubiquitous double ridges on Europa, the twisting sets of ridges on Triton, or the isolated giant mountains rising from Io's surface. All of the large and middle-sized outer planet satellites except Io are dominated by water ice near their surfaces. Though ice is a brittle material at the cold temperatures found in the outer solar system, the amount of energy it takes to bring it close to its melting point is lower than for a rocky body. Therefore, some unique features of icy satellite tectonics may be influenced by a near-surface ductile layer beneath the brittle surface material, and several of the icy satellites may possess subsurface oceans. Sources of stress to drive tectonism are commonly dominated by the tides that deform these satellites as they orbit their primary giant planets. On several satellites, the observed tectonic features may be the result of changes in their tidal figures, or motions of their solid surfaces with respect to their tidal figures. Other driving mechanisms for tectonics include volume changes due to ice or water phase changes in the interior, thermoelastic stress, deformation of the surface above rising diapirs of warm ice, and motion of subsurface material toward large impact basins as they fill in and relax. Most satellites exhibit evidence for extensional deformation, and some exhibit strike-slip faulting, whereas contractional tectonism appears to be rare. Io s surface is unique, exhibiting huge isolated mountains that may be blocks of crust tilting and foundering into the rapidly emptying interior as the surface is constantly buried by deposits from hyperactive volcanoes. Of the satellites, diminutive Enceladus is spectacularly active; its south polar terrain is a site of young tectonism, copious heat flow, and tall plumes venting into space. Europa's surface is pervasively tectonized, covered with a diverse array of exotic and incompletely understood tectonic features. The paucity of impact craters on Europa suggests that its tectonic activity is ongoing. Geysers on Triton show that some degree of current activity, while tectonic features that cross sparsely cratered terrain indicate that it may also be tectonically active. Ganymede and Miranda both exhibit ancient terrains that have been pulled apart by normal faulting. On Ganymede these faults form a global network, while they are confined to regional provinces on Miranda. Ariel, Dione, Tethys, Rhea, and Titania all have systems of normal faults cutting across their surfaces, though the rifting is less pronounced than it is on Ganymede and Miranda. Iapetus exhibits a giant equatorial ridge that has defied simple explanation. The rest of the large and middle-sized satellites show very little evidence for tectonic features on their surfaces, though the exploration of Titan's surface has just begun.

[1]  J. T. Ratcliff,et al.  Three-Dimensional Simulations of Mantle Convection in Io , 2001 .

[2]  S. Murchie,et al.  Possible breakup of dark terrain on Ganymede by large-scale shear faulting. , 1988 .

[3]  R. Jaumann,et al.  Release of volatiles from a possible cryovolcano from near-infrared imaging of Titan , 2005, Nature.

[4]  A. McEwen,et al.  Topographic evidence for shield volcanism on Io , 1984 .

[5]  B. R. Tufts,et al.  Polar Wander and Surface Convergence of Europa's Ice Shell: Evidence from a Survey of Strike-Slip Displacement , 2002 .

[6]  D. Pieri,et al.  Is Europa surface cracking due to thermal evolution? , 1981, Nature.

[7]  W. McKinnon,et al.  Convective instability in Europa's floating ice shell , 1997 .

[8]  R. Greeley,et al.  Trough-Bounding Ridge Pairs on Europa -- Considerations for an Endogenic Model of Formation , 1998 .

[9]  S. K. Croft,et al.  Voyager 2 at Neptune: Imaging Science Results , 1989, Science.

[10]  R. Pappalardo,et al.  Strained craters on Ganymede , 2005 .

[11]  Robert T. Pappalardo,et al.  Europa: Morphological characteristics of ridges and triple bands from Galileo data (E4 and E6) and assessment of a linear diapirism model , 1999 .

[12]  M. Ross,et al.  Tidal dissipation, surface heat flow, and figure of viscoelastic models of Io , 1988 .

[13]  A. Dombard,et al.  Folding of Europa's icy lithosphere: an analysis of viscous-plastic buckling and subsequent topographic relaxation , 2006 .

[14]  G. Neukum,et al.  Evidence for Europa‐like tectonic resurfacing styles on Ganymede , 2002 .

[15]  W. Ip On a ring origin of the equatorial ridge of Iapetus , 2005 .

[16]  Steven W. Squyres,et al.  The topography of Ganymede's grooved terrain , 1981 .

[17]  J. Moore,et al.  Flooding of Ganymede's bright terrains by low-viscosity water-ice lavas , 2001, Nature.

[18]  R. Pappalardo,et al.  Folds on Europa: implications for crustal cycling and accommodation of extension. , 2000, Science.

[19]  R. Greenberg The evil twin of Agenor: tectonic convergence on Europa , 2004 .

[20]  B. R. Tufts,et al.  Europa's Rate of Rotation Derived from the Tectonic Sequence in the Astypalaea Region , 2001 .

[21]  L. Iess,et al.  A non‐hydrostatic Rhea , 2008 .

[22]  M. W. Evans,et al.  Imaging of Titan from the Cassini spacecraft , 2005, Nature.

[23]  W. McKinnon,et al.  Is There Evidence for Polar Wander on Europa , 1996 .

[24]  S. Kieffer,et al.  Triton's plumes: Discovery, characteristics, and models , 1995 .

[25]  Harold F. Levison,et al.  Differential Cratering of Synchronously Rotating Satellites by Ecliptic Comets , 2001 .

[26]  A. McEwen,et al.  Mountains on Io: High‐resolution Galileo observations, initial interpretations, and formation models , 2001 .

[27]  Robert T. Pappalardo,et al.  The Local Topography of Uruk Sulcus and Galileo Regio Obtained from Stereo Images , 1998 .

[28]  I. Matsuyama,et al.  Rotational stability of tidally deformed planetary bodies , 2007 .

[29]  A. McEwen,et al.  The mountains of Io: Global and geological perspectives from Voyager and Galileo , 2001 .

[30]  M. Ashby,et al.  Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics , 1982 .

[31]  W. Durham RHEOLOGICAL PROPERTIES OF WATER ICE—APPLICATIONS TO SATELLITES OF THE OUTER PLANETS 1 , 2001 .

[32]  W. Durham,et al.  Transient and steady state creep response of ice I and magnesium sulfate hydrate eutectic aggregates , 2007 .

[33]  J. Pollack,et al.  Origin and evolution of the Saturn system , 1984 .

[34]  A. Showman,et al.  Effects of plasticity on convection in an ice shell: Implications for Europa , 2004 .

[35]  P. Schenk,et al.  Diapirism on Triton - A record of crustal layering and instability , 1993 .

[36]  R. Greeley,et al.  The geomorphology of Rhea: Implications for geologic history and surface processes , 1985 .

[37]  Gabriel Tobie,et al.  Europa: Tidal heating of upwelling thermal plumes and the origin of lenticulae and chaos melting , 2002 .

[38]  S. Squyres,et al.  Tidal evolution of the Uranian satellites. , 1983 .

[39]  R. Pappalardo,et al.  Furrow flexure and ancient heat flux on Ganymede , 2004 .

[40]  Kevin Zahnle,et al.  Cratering Rates in the Outer Solar System , 1999 .

[41]  W. Durham,et al.  Flow strength of highly hydrated Mg- and Na-sulfate hydrate salts, pure and in mixtures with water ice, with application to Europa , 2005 .

[42]  T. Spohn,et al.  Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-neptunian objects , 2006 .

[43]  Rosaly M. C. Lopes,et al.  The Sand Seas of Titan: Cassini RADAR Observations of Longitudinal Dunes , 2006, Science.

[44]  Nicholas C. Makris,et al.  Mechanics of tidally driven fractures in Europa's ice shell , 2005 .

[45]  P. Cassen,et al.  Melting of Io by Tidal Dissipation , 1979, Science.

[46]  Steven W. Squyres,et al.  The tectonics of icy satellites , 1986 .

[47]  M. Moons,et al.  Surfaces of section in the Miranda-Umbriel 3:1 inclination problem , 1994 .

[48]  R. Pappalardo,et al.  Estimates of Europa's ice shell thickness from elastically‐supported topography , 2003 .

[49]  W. Durham,et al.  Rheology of ice I at low stress and elevated confining pressure , 2001 .

[50]  D. Banfield,et al.  Neptune's Story , 1989, Science.

[51]  Matthew P. Golombek,et al.  Early thermal profiles and lithospheric strength of Ganymede from extensional tectonic features , 1986 .

[52]  I. Matsuyama,et al.  Reorientation of icy satellites by impact basins , 2007 .

[53]  P. Schenk,et al.  Topography of Endogenic Features on Saturnian Mid-Sized Satellites , 2007 .

[54]  C. Sotin,et al.  Iapetus’ geophysics : rotation rate, shape, and equatorial ridge , 2007 .

[55]  R. Pappalardo,et al.  On the origins of band topography, Europa , 2003 .

[56]  A. McEwen,et al.  Galileo Observations of Europa's Opposition Effect , 1998 .

[57]  L. Soderblom,et al.  Volcanic eruptions on Io - Implications for surface evolution and mass loss , 1982 .

[58]  M. Rist,et al.  High-Stress Ice Fracture and Friction , 1997 .

[59]  R. Sullivan,et al.  Evidence for Separation across a Gray Band on Europa , 1996 .

[60]  D. Stevenson,et al.  Polar wander of an ice shell on Europa , 1987 .

[61]  A. Barr LIMITS ON HEAT TRANSPORT AND RESURFACING RATES DUE TO MOBILE LID CONVECTION BENEATH ENCELADUS’ SOUTH POLAR TERRAIN , 2008 .

[62]  G. Schubert,et al.  Interior composition, structure and dynamics of the Galilean satellites , 2004 .

[63]  David Morrison,et al.  Satellites of Jupiter , 1982 .

[64]  Clark R. Chapman,et al.  Does Europa have a subsurface ocean? Evaluation of the geological evidence , 1999 .

[65]  M. Robinson,et al.  Displacement‐length relations of thrust faults associated with lobate scarps on Mercury and Mars: Comparison with terrestrial faults , 2000 .

[66]  J. Anderson,et al.  Mass Anomalies on Ganymede , 2004 .

[67]  Dale P. Cruikshank,et al.  Neptune and Triton , 1995 .

[68]  D. Stevenson,et al.  Thermal state of an ice shell on Europa , 1989 .

[69]  E. Asphaug,et al.  Modeling global impact effects on middle-sized icy bodies: applications to Saturn's moons , 2004 .

[70]  R. Greenberg,et al.  Flexure of Europa's lithosphere due to ridge-loading , 2003 .

[71]  V. F. Petrenko,et al.  Physics of Ice , 1999 .

[72]  V. Solomatov,et al.  Scaling of temperature‐ and stress‐dependent viscosity convection , 1995 .

[73]  A. Dombard,et al.  Chaos on Io: A model for formation of mountain blocks by crustal heating, melting, and tilting , 2001 .

[74]  Nicolaus Copernicus,et al.  De revolutionibus orbium coelestium , 1965 .

[75]  B. R. Tufts,et al.  Lithospheric Dilation on Europa , 2000 .

[76]  Jürgen Oberst,et al.  Grooved Terrain on Ganymede: First Results from Galileo High-Resolution Imaging , 1998 .

[77]  C. Lomnitz Geodynamics. , 1973, Science.

[78]  P. Thomas,et al.  The global shape of Europa: Constraints on lateral shell thickness variations , 2007 .

[79]  S. Peale Rotation histories of the natural satellites , 1977 .

[80]  E. Schulson The fracture of water ice Ih: A short overview , 2006 .

[81]  S. Squyres,et al.  Solid-State Ice Volcanism on the Satellites of Uranus , 1988, Science.

[82]  A. Dombard,et al.  Formation of Grooved Terrain on Ganymede: Extensional Instability Mediated by Cold, Superplastic Creep , 2001 .

[83]  R. Pappalardo,et al.  Model constraints on the opening rates of bands on Europa , 2005 .

[84]  C. Murray,et al.  Dynamics of the Uranian and Saturnian satelite systems: A chaotic route to melting Miranda? , 1988 .

[85]  Richard J. Greenberg,et al.  Astypalaea Linea: A Large-Scale Strike-Slip Fault on Europa , 1999 .

[86]  M. Bulmer,et al.  Origin of mountains on Io by thrust faulting and large-scale mass movements , 1998, Science.

[87]  B. R. Tufts,et al.  Formation of cycloidal features on Europa. , 1999, Science.

[88]  R. H. Brown,et al.  Voyager 2 in the Uranian System: Imaging Science Results , 1986, Science.

[89]  P. Thomas Radii, shapes, and topography of the satellites of Uranus from limb coordinates , 1988 .

[90]  J. Lunine,et al.  Mobilization of cryogenic ice in outer Solar System satellites , 1986, Nature.

[91]  R. Greeley,et al.  Dark Terrain on Ganymede: Geological Mapping and Interpretation of Galileo Regio at High Resolution☆ , 1998 .

[92]  L. Keszthelyi,et al.  Ridges and tidal stress on Io , 2004 .

[93]  J. Wisdom Spin-Orbit Secondary Resonance Dynamics of Enceladus , 2004 .

[94]  G. Neukum,et al.  Tethys: Lithospheric thickness and heat flux from flexurally supported topography at Ithaca Chasma , 2007 .

[95]  Robert T. Pappalardo,et al.  The origin of domes on Europa: The role of thermally induced compositional diapirism , 2004 .

[96]  H. Melosh,et al.  Cometary Nuclei and Tidal Disruption: The Geologic Record of Crater Chains on Callisto and Ganymede , 1996 .

[97]  A. Nur The origin of tensile fracture lineaments , 1982 .

[98]  I. Matsuyama,et al.  True polar wander on Europa from global-scale small-circle depressions , 2008, Nature.

[99]  Robert T. Pappalardo,et al.  Geology of Europa , 2004 .

[100]  W. McKinnon Odd tectonics of a rebuilt moon , 1988, Nature.

[101]  E. Gaidos,et al.  Planetary science: Tectonics and water on Europa , 2000, Nature.

[102]  Michael T. Bland,et al.  The formation of Ganymede's grooved terrain , 2009 .

[103]  A. Davies,et al.  Shield volcano topography and the rheology of lava flows on Io , 2004 .

[104]  S. Weidenschilling,et al.  How fast do Galilean satellites spin , 1984 .

[105]  E. M. Shoemaker,et al.  Craters and basins on Ganymede and Callisto - Morphological indicators of crustal evolution , 1982 .

[106]  Timothy Edward Dowling,et al.  Jupiter : the planet, satellites, and magnetosphere , 2004 .

[107]  David A. Crown,et al.  Geologic map of Io , 2011 .

[108]  F. Nimmo,et al.  Normal faulting on Europa: implications for ice shell properties , 2005 .

[109]  J. Head,et al.  Evidence for shear failure in forming near-equatorial lineae on Europa , 2003 .

[110]  T. Owen,et al.  Composition, Physical State, and Distribution of Ices at the Surface of Triton , 1999 .

[111]  S. Squyres Volume changes in Ganymede and Callisto and the origin of grooved terrain , 1980 .

[112]  H. Melosh Large impact craters and the moon's orientation , 1975 .

[113]  R. J. Willemann,et al.  Role of membrane stresses in the support of planetary topography , 1981 .

[114]  S. Kattenhorn Strike-slip fault evolution on Europa: evidence from tailcrack geometries , 2004 .

[115]  Stephen H. Kirby,et al.  Friction of ice , 1988 .

[116]  N. Sleep Isostasy and Flexure of the Lithosphere , 2002 .

[117]  G. Davies,et al.  Magma transport of heat on Io: A mechanism allowing a thick lithosphere , 1981 .

[118]  J. Head,et al.  Plate motion on Europa and nonrigid behavior of the icy lithosphere : The Castalia Macula Region , 2006 .

[119]  A. Aydin Failure modes of the lineaments on Jupiter's moon, Europa: Implications for the evolution of its icy crust , 2006 .

[120]  P. Geissler,et al.  Crack azimuths on Europa: the G1 lineament sequence revisited , 2005 .

[121]  Michael T. Bland,et al.  The formation of Ganymede's grooved terrain: Numerical modeling of extensional necking instabilities , 2007 .

[122]  F. Nimmo Dynamics of rifting and modes of extension on icy satellites , 2004 .

[123]  J. Burns,et al.  Shapes of the saturnian icy satellites and their significance , 2007 .

[124]  S. K. Croft,et al.  Geology of the Uranian satellites , 1991 .

[125]  W. McKinnon,et al.  Three-layered models of Ganymede and Callisto: Compositions, structures, and aspects of evolution , 1988 .

[126]  M. Coon,et al.  A Sea Ice Analog for the Surface of Europa , 1996 .

[127]  D. Stevenson,et al.  Gas-driven water volcanism and the resurfacing of Europa , 1985 .

[128]  David G. Vaughan,et al.  Tidal flexure at ice shelf margins , 1995 .

[129]  S. Peale Tidally Induced Volcanism , 2003 .

[130]  M. Holman,et al.  Planetary Impact Rates from Ecliptic Comets , 2000 .

[131]  P. Schenk The geology of Callisto , 1995 .

[132]  Douglas P. Hamilton,et al.  Neptune's capture of its moon Triton in a binary–planet gravitational encounter , 2006, Nature.

[133]  H. Melosh,et al.  Ridges on Europa: Origin by Incremental Ice-Wedging , 2004 .

[134]  A. Dombard,et al.  Elastoviscoplastic relaxation of impact crater topography with application to Ganymede and Callisto , 2006 .

[135]  S. Squyres,et al.  INTERACTIONS BETWEEN IMPACT CRATERS AND TECTONIC FRACTURES ON ENCELADUS , 2006 .

[136]  T. Owen,et al.  Water Ice on Triton , 2000 .

[137]  G. Collins,et al.  Enceladus' south polar sea , 2007 .

[138]  O. Castelnau,et al.  Compressive creep of ice containing a liquid intergranular phase: Rate‐controlling processes in the dislocation creep regime , 1999 .

[139]  W. R. Buck,et al.  Modes of continental lithospheric extension , 1991 .

[140]  J. Moore,et al.  The geology of Tethys , 1983 .

[141]  Henry B. Garrett,et al.  Energetic Ion and Electron Irradiation of the Icy Galilean Satellites , 2001 .

[142]  J. Head,et al.  Strike‐slip duplexing on Jupiter's icy moon Europa , 2000 .

[143]  Louis Moresi,et al.  Scaling of time‐dependent stagnant lid convection: Application to small‐scale convection on Earth and other terrestrial planets , 2000 .

[144]  P. Cassen,et al.  Is there liquid water on Europa , 1979 .

[145]  G. Neukum,et al.  Cassini Observes the Active South Pole of Enceladus , 2006, Science.

[146]  J. Jackson,et al.  Normal faulting in the upper continental crust: observations from regions of active extension , 1989 .

[147]  K. Zahnle,et al.  Cratering rates on the Galilean satellites. , 1998, Icarus.

[148]  R. Sullivan,et al.  Morphology of Europan bands at high resolution: A mid‐ocean ridge‐type rift mechanism , 2002 .

[149]  Paul M. Schenk,et al.  Ages and interiors: the cratering record of the Galilean satellites , 2007 .

[150]  G. Tobie,et al.  The production of Ganymede's magnetic field , 2008 .

[151]  F. Nimmo Stresses generated in cooling viscoelastic ice shells: Application to Europa , 2004 .

[152]  F. Nimmo Non-Newtonian topographic relaxation on Europa , 2004 .

[153]  James M. McKenzie,et al.  Dike emplacement on Venus and on Earth , 1992 .

[154]  D. J. BLUNDELL,et al.  Salt Tectonics , 2004 .

[155]  S. Squyres,et al.  Thermal stress tectonics on the satellites of Saturn and Uranus , 1991 .

[156]  J. Plescia Geological terrains and crater frequencies on Ariel , 1987, Nature.

[157]  G. Schubert,et al.  Saturn's icy satellites - Thermal and structural models , 1983 .

[158]  R. T. Pappalardo,et al.  Shear heating as the origin of the plumes and heat flux on Enceladus , 2007, Nature.

[159]  R. Kirk,et al.  Rain, winds and haze during the Huygens probe's descent to Titan's surface , 2005, Nature.

[160]  D. Pieri Lineament and polygon patterns on Europa , 1981, Nature.

[161]  P. Schenk Fluid volcanism on Miranda and Ariel: Flow morphology and composition , 1991 .

[162]  Lijie Han,et al.  Thermo‐compositional convection in Europa's icy shell with salinity , 2005 .

[163]  Joseph A. Burns,et al.  Evolution of Lineaments on Europa: Clues from Galileo Multispectral Imaging Observations , 1998 .

[164]  S. Squyres,et al.  The evolution of Enceladus , 1983 .

[165]  J. L. Mitchell,et al.  A New Look at the Saturn System: The Voyager 2 Images , 1982, Science.

[166]  R. Beyer,et al.  Unstable extension of Enceladus' lithosphere , 2007 .

[167]  J. Anderson,et al.  Shape, Mean Radius, Gravity Field, and Interior Structure of Callisto , 2001 .

[168]  J. Head,et al.  The role of extensional instability in creating Ganymede grooved terrain: Insights from Galileo High‐Resolution Stereo Imaging , 1998 .

[169]  K. Macdonald Mid-Ocean Ridges: Fine Scale Tectonic, Volcanic and Hydrothermal Processes Within the Plate Boundary Zone , 1982 .

[170]  F. J. Turner,et al.  Igneous and Metamorphic Petrology , 1960 .

[171]  G. Neukum,et al.  The global geology of Rhea: preliminary implications from the Cassini ISS data , 2007 .

[172]  G. Collins Global Expansion of Ganymede Derived from Strain Measurements in Grooved Terrain , 2006 .

[173]  W. Weeks,et al.  The mechanical properties of sea ice: a status report , 1984 .

[174]  W. McKinnon,et al.  Gas Drag and the Orbital Evolution of a Captured Triton , 1995 .

[175]  T V Johnson,et al.  Encounter with saturn: voyager 1 imaging science results. , 1981, Science.

[176]  K. Zahnle,et al.  On the negligible surface age of Triton , 2007 .

[177]  M. Volcanic constructs on Ganymede and Enceladus : Topographic evidence from stereo images and photoclinometry , 2022 .

[178]  S. Kattenhorn Nonsynchronous Rotation Evidence and Fracture History in the Bright Plains Region, Europa , 2002 .

[179]  Peter Beighton,et al.  de la Chapelle, A. , 1997 .

[180]  MYSTERY OF CALLISTO : IS IT UNDIFFERENTIATED ? , 1997 .

[181]  M. Golombek,et al.  Constraints on the subsurface structure of Europa , 1990 .

[182]  R. Greeley,et al.  Episodic plate separation and fracture infill on the surface of Europa , 1998, Nature.

[183]  S. Murchie,et al.  Global reorientation and its effect on tectonic patterns on Ganymede , 1986 .

[184]  P. Helfenstein,et al.  Patterns of Fracture and Tidal Stresses Due to Nonsynchronous Rotation: Implications for Fracturing on Europa , 1984 .

[185]  Alfred S. McEwen,et al.  The lithosphere and surface of Io , 2004 .

[186]  W. McKinnon,et al.  Formation of mountains on Io: Variable volcanism and thermal stresses , 2009 .

[187]  I. Matsuyama,et al.  Tectonic patterns on reoriented and despun planetary bodies , 2008 .

[188]  H. Melosh,et al.  Tectonics of planetary loading - A general model and results , 1990 .

[189]  J. Plescia Geology of Dione , 1983 .

[190]  Bryan J. Travis,et al.  Enceladus: Present internal structure and differentiation by early and long-term radiogenic heating , 2007 .

[191]  R. Greeley,et al.  Geological evidence for solid-state convection in Europa's ice shell , 1998, Nature.

[192]  C. Murray,et al.  Solar System Dynamics: Expansion of the Disturbing Function , 1999 .

[193]  Robert T. Pappalardo,et al.  Effective elastic thickness and heat flux estimates on Ganymede , 2001 .

[194]  P. Tackley Convection in Io's asthenosphere: Redistribution of nonuniform tidal heating by mean flows , 2001 .

[195]  J. Head,et al.  Geology and mapping of dark terrain on Ganymede and implications for grooved terrain formation , 2000 .

[196]  Simon A. Kattenhorn,et al.  Fault-induced perturbed stress fields and associated tensile and compressive deformation at fault tips in the ice shell of Europa: implications for fault mechanics , 2006 .

[197]  W. McKinnon Geodynamics of Icy Satellites , 1998 .

[198]  M. W. Evans,et al.  Cassini Imaging Science: Initial Results on Phoebe and Iapetus , 2005, Science.

[199]  R. Willemann Reorientation of planets with elastic lithospheres , 1984 .

[200]  M. McNutt Lithospheric flexure and thermal anomalies , 1984 .

[201]  P. Helfenstein,et al.  Fractures on Europa - Possible response of an ice crust to tidal deformation , 1980 .

[202]  S. Peale Origin and evolution of the natural satellites , 1999 .

[203]  Bradford A. Smith,et al.  The Jupiter System Through the Eyes of Voyager 1 , 1979, Science.

[204]  P. Schenk,et al.  Fault offsets and lateral crustal movement on Europa - Evidence for a mobile ice shell , 1985 .

[205]  Robert T. Pappalardo,et al.  Tectonic Processes on Europa: Tidal Stresses, Mechanical Response, and Visible Features , 1998 .

[206]  David L. Goldsby,et al.  Superplastic deformation of ice: Experimental observations , 2001 .

[207]  Charon's Radius and Density from the Combined Data Sets of the 2005 July 11 Occultation , 2006, astro-ph/0602082.

[208]  R. Pappalardo,et al.  Diapir-induced reorientation of Saturn's moon Enceladus , 2006, Nature.

[209]  Randolph L. Kirk,et al.  Thermal evolution of a differentiated Ganymede and implications for surface features , 1987 .

[210]  M. Roderick,et al.  The cause of decreased pan evaporation over the past 50 years. , 2002, Science.

[211]  David J. Stevenson,et al.  Coupled Orbital and Thermal Evolution of Ganymede , 1997 .

[212]  H. Melosh,et al.  Evolution of planetary lithospheres: Evidence from multiringed structures on Ganymede and Callisto , 1980 .

[213]  W. Moore,et al.  Thermal equilibrium in Europa's ice shell , 2006 .

[214]  Gabriel Tobie,et al.  Tidal dissipation within large icy satellites: Applications to Europa and Titan , 2005 .

[215]  J. Goguen,et al.  Historical Photometric Evidence for Volatile Migration on Triton , 1994 .

[216]  Rosaly M. C. Lopes,et al.  Cassini Encounters Enceladus: Background and the Discovery of a South Polar Hot Spot , 2006, Science.

[217]  H. Melosh Tectonic patterns on a tidally distorted planet , 1980 .

[218]  M. Ross,et al.  The coupled orbital and thermal evolution of Triton , 1990 .

[219]  S. Murchie,et al.  Local-scale stratigraphy of grooved terrain on Ganymede , 1986 .

[220]  Randolph L. Kirk,et al.  Mapping of Titan: Results from the first Titan radar passes , 2006 .

[221]  R. Pappalardo,et al.  Manifestations of Strike-Slip Faulting on Ganymede , 2003 .

[222]  A. McEwen Tidal reorientation and the fracturing of Jupiter's moon Europa , 1986, Nature.

[223]  R. Pappalardo,et al.  A shear heating origin for ridges on Triton , 2005 .

[224]  R. Pappalardo,et al.  Modeling stresses on satellites due to nonsynchronous rotation and orbital eccentricity using gravitational potential theory , 2009 .

[225]  Robert T. Pappalardo,et al.  Topographic wavelengths of Ganymede groove lanes from Fourier analysis of Galileo images , 1999 .

[226]  Robert T. Pappalardo,et al.  Geology of Ganymede , 2004 .

[227]  Masahiko Arakawa,et al.  Adhesion shear theory of ice friction at low sliding velocities, combined with ice sintering , 2004 .

[228]  Gabriel Tobie,et al.  Solid tidal friction above a liquid water reservoir as the origin of the south pole hotspot on Enceladus , 2008 .

[229]  A. Showman,et al.  Implications of shear heating and fracture zones for ridge formation on Europa , 2007 .

[230]  D. Stevenson,et al.  Viscosity of rock-ice mixtures and applications to the evolution of icy satellites☆ , 1983 .

[231]  F. Paganelli,et al.  Cassini RADAR images at Hotei Arcus and western Xanadu, Titan: Evidence for geologically recent cryovolcanic activity , 2009 .

[232]  Lithospheric stresses due to radiogenic heating of an ice-silicate planetary body: Implications for Ganymede's tectonic evolution , 1984 .

[233]  W. McKinnon Tectonic deformation of Galileo Regio and limits to the planetary expansion of Ganymede , 1982 .

[234]  P. Geissler,et al.  Crack azimuths on Europa: time sequence in the southern leading face , 2004 .

[235]  J. Kargel,et al.  The Volcanic and Tectonic History of Enceladus , 1996 .

[236]  G. Schubert,et al.  Tidal dissipation in a viscoelastic planet , 1986 .

[237]  Alfred S. McEwen,et al.  Orogenic tectonism on Io , 2001 .

[238]  J. Plescia Cratering history of Miranda: Implications for geologic processes , 1988 .

[239]  S. Kattenhorn,et al.  The great thickness debate: Ice shell thickness models for Europa and comparisons with estimates based on flexure at ridges , 2005 .

[240]  A. McEwen,et al.  The search for current geologic activity on Europa , 2000 .

[241]  Robert T. Pappalardo,et al.  Cryomagmatic Mechanisms for the Formation of Rhadamanthys Linea, Triple Band Margins, and Other Low-Albedo Features on Europa , 2000 .

[242]  W. McKinnon On convection in ice I shells of outer Solar System bodies, with detailed application to Callisto , 2006 .

[243]  B. R. Tufts,et al.  TIDAL‐TECTONIC PROCESSES AND THEIR IMPLICATIONS FOR THE CHARACTER OF EUROPA'S ICY CRUST , 2002 .

[244]  W. McKinnon,et al.  Triton’s Surface Age and Impactor Population Revisited in Light of Kuiper Belt Fluxes: Evidence for Small Kuiper Belt Objects and Recent Geological Activity , 1999, astro-ph/9910435.

[245]  B. R. Tufts,et al.  Rotation of Europa: Constraints from Terminator and Limb Positions , 1997 .

[246]  J. D. Anderson,et al.  Gravitational constraints on the internal structure of Ganymede , 1996, Nature.

[247]  J. Head,et al.  Brine mobilization during lithospheric heating on Europa: Implications for formation of chaos terrain, lenticula texture, and color variations , 1999 .

[248]  H. Melosh Global tectonics of a despun planet , 1977 .

[249]  Rosaly M. C. Lopes,et al.  Mountains on Titan observed by Cassini Radar , 2006 .

[250]  D. Pieri,et al.  Geologic mapping of Europa. , 1981 .

[251]  Q. Passey Viscosity of the lithosphere of Enceladus , 1983 .

[252]  W. McKinnon,et al.  Convection in ice I shells and mantles with self-consistent grain size , 2007 .

[253]  B. R. Tufts,et al.  Terrestrial Sea Ice Morphology: Considerations for Europa☆ , 1998 .

[254]  H. J. Melosh,et al.  The tectonics of Mercury , 1988 .

[255]  J. Burns,et al.  Galileo's First Images of Jupiter and the Galilean Satellites , 1996, Science.

[256]  W. Durham,et al.  Effects of dispersed particulates on the rheology of water ice at planetary conditions , 1992 .

[257]  R. Greeley,et al.  Geologic mapping of the northern leading hemisphere of Europa from Galileo solid‐state imaging data , 2000 .

[258]  H. Melosh,et al.  Sinker tectonics: An approach to the surface of Miranda , 1988 .

[259]  R. Greenberg,et al.  Eruptions arising from tidally controlled periodic openings of rifts on Enceladus , 2007, Nature.

[260]  M. Kivelson,et al.  The Permanent and Inductive Magnetic Moments of Ganymede , 2002 .

[261]  S. Kattenhorn,et al.  Cycloid crack sequences on Europa: Relationship to stress history and constraints on growth mechanics based on cusp angles , 2008 .

[262]  M. Manga,et al.  Pressurized oceans and the eruption of liquid water on Europa and Enceladus , 2007 .

[263]  M. Ross,et al.  Viscoelastic models of tidal heating in Enceladus , 1989 .

[264]  J. Anderson,et al.  The magnetic field and internal structure of Ganymede , 1996, Nature.

[265]  M. Manga,et al.  Formation of bands and ridges on Europa by cyclic deformation: Insights from analogue wax experiments , 2004 .

[266]  P. Goldreich Final spin states of planets and satellites. , 1966 .

[267]  H. Melosh Tectonic patterns on a reoriented planet: Mars , 1980 .

[268]  E. Schulson On the origin of a wedge crack within the icy crust of Europa , 2002 .

[269]  Richard Greenberg,et al.  Warming of Miranda during chaotic rotation , 1987, Nature.

[270]  B. Bills Free and forced obliquities of the Galilean satellites of Jupiter , 2005 .

[271]  R. Greeley,et al.  Extensional tilt blocks on Miranda: Evidence for an upwelling origin of Arden Corona , 1997 .

[272]  P. Meredith,et al.  Simulation of Subduction Zone Seismicity by Dehydration of Serpentine , 2002, Science.

[273]  R. Pappalardo,et al.  Onset of convection in the icy Galilean satellites: Influence of rheology , 2005 .

[274]  D. L. Herrick,et al.  Extensional and compressional instabilities in icy satellite lithospheres , 1989 .

[275]  P. Helfenstein,et al.  Patterns of fracture and tidal stresses on Europa , 1983 .

[276]  G. Schubert,et al.  The tidal response of Ganymede and Callisto with and without liquid water oceans , 2003 .

[277]  M. G. Best Igneous and Metamorphic Petrology , 1982 .

[278]  B. R. Tufts,et al.  Strike-slip faults on Europa: Global shear patterns driven by tidal stress , 1998 .

[279]  Jeffrey S. Kargel,et al.  The geology of Triton. , 1995 .

[280]  E. Gaidos,et al.  Strike‐slip motion and double ridge formation on Europa , 2002 .

[281]  Charles F. Yoder,et al.  Astrometric and Geodetic Properties of Earth and the Solar System , 1995 .

[282]  Eric Rignot,et al.  Tidal flexure along ice-sheet margins: comparison of InSAR with an elastic-plate model , 2002, Annals of Glaciology.

[283]  C. Chapman,et al.  Cratering of planetary satellites. , 1986 .

[284]  M. Manga,et al.  Causes, characteristics and consequences of convective diapirism on Europa , 2002 .

[285]  Robert H. Brown,et al.  The Role of an Internal Heat Source for the Eruptive Plumes on Triton , 1996 .

[286]  R. Pappalardo,et al.  Tidally driven stress accumulation and shear failure of Enceladus's tiger stripes , 2008 .

[287]  B. Lucchitta Grooved terrain on Ganymede , 1980 .

[288]  E. Asphaug,et al.  Large impact features on middle-sized icy satellites , 2004 .

[289]  W. Durham,et al.  Flow of ices in the ammonia‐water system , 1993 .

[290]  A. McEwen,et al.  Multispectral Terrain Analysis of Europa from Galileo Images , 1998 .

[291]  W. Durham,et al.  Rheology of planetary ices , 1998 .

[292]  J. Burns,et al.  Evidence for non-synchronous rotation of Europa , 1998, Nature.

[293]  A. McEwen,et al.  Paterae on Io: A new type of volcanic caldera? , 2001 .

[294]  D. Ferrill,et al.  Distribution, morphology, and origins of Martian pit crater chains , 2004 .