Isotropic growth on a grid

Abstract Isotropic growth from a single point on a two-dimensional square grid should generate an increasing sequence of discretized discs. We present a simple probabilistic model for growth on a grid, and discuss a class of parameterizations of the model (called kernels) which was conjectured [S. Thompson and A. Rosenfeld, Discrete stochastic growth models for two-dimensional shapes. In Shape in Picture—Mathematical Descriptions of Shape in Grey level Images , Y. L. O. A. Toet, D. H. Foster and P. Meer (eds), 301–318, Springer-Verlag, Heidelberg (1993)] to produce isotropic growth. We disprove this conjecture, but we claim that these kernels produce growth that can be decomposed into isotropic and nonisotropic other probabilistic growth processes on grids, and describe qualitative and quantitative properties of the models. We also consider a deterministic growth model based on the diffusion equation, and show empirically that discretization of this model leads to a steady state configuration that appears to be polygonal.

[1]  Azriel Rosenfeld,et al.  Digital Picture Processing, Volume 1 , 1982 .

[2]  Azriel Rosenfeld,et al.  Discrete Stochastic Growth Models for Two-Dimensional Shapes , 1994 .

[3]  Stephen Wolfram,et al.  Cellular automata as models of complexity , 1984, Nature.

[4]  H. Poincaré,et al.  Percolation ? , 1982 .

[5]  J. Slack Topobiology: An introduction to molecular embryology G. M. Edelman. Basic Books, New York (1988), 240 pp. price $69.50 , 1991, Neuroscience.

[6]  J. R. Pierce,et al.  Symposium on Information Theory in Biology , 1959 .

[7]  M. Eden A Two-dimensional Growth Process , 1961 .

[8]  D. Richardson Random growth in a tessellation , 1973, Mathematical Proceedings of the Cambridge Philosophical Society.

[9]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[10]  T. Williams,et al.  Stochastic Model for Abnormal Clone Spread through Epithelial Basal Layer , 1972, Nature.

[11]  Peter Kochevar A Simple Light Simulation Algorithm for Massively Parallel Machines , 1991, J. Parallel Distributed Comput..

[12]  Azriel Rosenfeld,et al.  Digital Picture Processing , 1976 .

[13]  G. Grimmett,et al.  The Critical Contact Process Dies Out , 1990 .

[14]  David Griffeath,et al.  The basic contact processes , 1981 .

[15]  Rick Durrett,et al.  On the Growth of One Dimensional Contact Processes , 1980 .

[16]  Robert M. Haralick,et al.  A Measure for Circularity of Digital Figures , 1974, IEEE Trans. Syst. Man Cybern..

[17]  A. ROSENFELD,et al.  Distance functions on digital pictures , 1968, Pattern Recognit..

[18]  R. Durrett Oriented Percolation in Two Dimensions , 1984 .

[19]  H. L. Le Roy,et al.  Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Vol. IV , 1969 .

[20]  William G. Poole,et al.  An introduction to numerical methods for differential equations , 1984 .

[21]  Rick Durrett,et al.  The Shape of the Limit Set in Richardson's Growth Model , 1981 .

[22]  Dietrich Stauffer,et al.  Surface structure and anisotropy of Eden clusters , 1985 .

[23]  T. Vicsek Fractal Growth Phenomena , 1989 .

[24]  T. E. Harris Contact Interactions on a Lattice , 1974 .

[25]  Hans J. Herrmann,et al.  Geometrical cluster growth models and kinetic gelation , 1986 .