Error analysis for an ALE evolving surface finite element method

We consider an arbitrary Lagrangian–Eulerian evolving surface finite element method for the numerical approximation of advection and diffusion of a conserved scalar quantity on a moving surface. We describe the method, prove optimal order error bounds and present numerical simulations that agree with the theoretical results. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 459–499, 2015

[1]  Christian Lubich,et al.  Variational discretization of wave equations on evolving surfaces , 2014, Math. Comput..

[2]  Charles M. Elliott,et al.  An abstract framework for parabolic PDEs on evolving spaces , 2014, 1403.4500.

[3]  Maxim A. Olshanskii,et al.  Error Analysis of a Space-Time Finite Element Method for Solving PDEs on Evolving Surfaces , 2014, SIAM J. Numer. Anal..

[4]  Chandrasekhar Venkataraman,et al.  Parameter identification problems in the modelling of cell motility , 2013, Journal of mathematical biology.

[5]  Charles M. Elliott,et al.  Evolving surface finite element method for the Cahn–Hilliard equation , 2013, Numerische Mathematik.

[6]  Chandrasekhar Venkataraman,et al.  Backward difference time discretization of parabolic differential equations on evolving surfaces , 2013 .

[7]  Gerhard Dziuk,et al.  Scalar conservation laws on moving hypersurfaces , 2013, 1307.1056.

[8]  Maxim A. Olshanskii,et al.  An Eulerian Space-Time Finite Element Method for Diffusion Problems on Evolving Surfaces , 2013, SIAM J. Numer. Anal..

[9]  Charles M. Elliott,et al.  Finite element methods for surface PDEs* , 2013, Acta Numerica.

[10]  Charles M. Elliott,et al.  Computation of Two-Phase Biomembranes with Phase Dependent Material Parameters Using Surface Finite Elements , 2013 .

[11]  C. M. Elliott,et al.  An ALE ESFEM for Solving PDEs on Evolving Surfaces , 2012 .

[12]  C. M. Elliott,et al.  Modelling cell motility and chemotaxis with evolving surface finite elements , 2012, Journal of The Royal Society Interface.

[13]  C. M. Elliott,et al.  A Fully Discrete Evolving Surface Finite Element Method , 2012, SIAM J. Numer. Anal..

[14]  Charles M. Elliott,et al.  L2-estimates for the evolving surface finite element method , 2012, Math. Comput..

[15]  Gerhard Dziuk,et al.  Runge–Kutta time discretization of parabolic differential equations on evolving surfaces , 2012 .

[16]  Morten Vierling,et al.  On control-constrained parabolic optimal control problems on evolving surfaces - theory and variational discretization , 2011, ArXiv.

[17]  Matthew P. Neilson,et al.  Use of the parameterised finite element method to robustly and efficiently evolve the edge of a moving cell. , 2010, Integrative biology : quantitative biosciences from nano to macro.

[18]  Amy Henderson Squilacote The Paraview Guide , 2008 .

[19]  Charles M. Elliott,et al.  Finite elements on evolving surfaces , 2007 .

[20]  Kunibert G. Siebert,et al.  Design of Adaptive Finite Element Software - The Finite Element Toolbox ALBERTA , 2005, Lecture Notes in Computational Science and Engineering.

[21]  Charles M. Elliott,et al.  The global dynamics of discrete semilinear parabolic equations , 1993 .

[22]  M. Vierling,et al.  Parabolic optimal control problems on evolving surfaces subject to point-wise box constraints on the control – theory and numerical realization , 2014 .

[23]  C. Lubich VARIATIONAL DISCRETIZATION OF LINEAR WAVE EQUATIONS ON EVOLVING SURFACES , 2012 .

[24]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[25]  G. Dziuk Finite Elements for the Beltrami operator on arbitrary surfaces , 1988 .