Using web search queries to monitor influenza-like illness: an exploratory retrospective analysis, Netherlands, 2017/18 influenza season
暂无分享,去创建一个
Paul P Schneider | Christel JAW van Gool | Peter Spreeuwenberg | Mariëtte Hooiveld | Gé A Donker | David J Barnett | John Paget | David J. M. Barnett | P. Spreeuwenberg | J. Paget | M. Hooiveld | G. Donker | P. Schneider | C. V. van Gool
[1] Gail M Williams,et al. Internet-based surveillance systems for monitoring emerging infectious diseases , 2013, The Lancet Infectious Diseases.
[2] Max Kuhn,et al. Applied Predictive Modeling , 2013 .
[3] Seung-Pyo Jun,et al. Ten years of research change using Google Trends: From the perspective of big data utilizations and applications , 2017 .
[4] Leonard J. Tashman,et al. Out-of-sample tests of forecasting accuracy: an analysis and review , 2000 .
[5] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[6] Jeremy Ginsberg,et al. Detecting influenza epidemics using search engine query data , 2009, Nature.
[7] M. Santillana,et al. What can digital disease detection learn from (an external revision to) Google Flu Trends? , 2014, American journal of preventive medicine.
[8] D. Lazer,et al. The Parable of Google Flu: Traps in Big Data Analysis , 2014, Science.
[9] Caroline O. Buckee,et al. Digital Epidemiology , 2012, PLoS Comput. Biol..
[10] PP Schneider,et al. PREPRINT: Using digital epidemiology methods to monitor influenza-like illness in the Netherlands in real-time: the 2017-2018 season , 2018, bioRxiv.
[11] Galit Shmueli,et al. To Explain or To Predict? , 2010, 1101.0891.
[12] M. Vicente,et al. Monitoring influenza activity in Europe with Google Flu Trends: comparison with the findings of sentinel physician networks - results for 2009-10. , 2010, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.
[13] Cécile Viboud,et al. Infectious Disease Surveillance in the Big Data Era: Towards Faster and Locally Relevant Systems. , 2016, The Journal of infectious diseases.
[14] Jesse O'Shea,et al. Digital disease detection: A systematic review of event-based internet biosurveillance systems , 2017, International Journal of Medical Informatics.
[15] Georg Heinze,et al. Variable selection – A review and recommendations for the practicing statistician , 2018, Biometrical journal. Biometrische Zeitschrift.
[16] Res,et al. Annual report. Surveillance of influenza and other respiratory infections in the Netherlands: winter 2015/2016 : Surveillance van influenza en andere luchtweginfecties: winter 2015/2016 , 2016 .
[17] Tobias Preis,et al. Adaptive nowcasting of influenza outbreaks using Google searches , 2014, Royal Society Open Science.
[18] Robert Tibshirani,et al. Post‐selection inference for ℓ1 ‐penalized likelihood models , 2016, The Canadian journal of statistics = Revue canadienne de statistique.
[19] Madhav V. Marathe,et al. A framework for evaluating epidemic forecasts , 2017, BMC Infectious Diseases.
[20] Dirk Eddelbuettel,et al. R Functions to Perform and Display Google Trends Queries , 2015 .
[21] Mark Dredze,et al. Combining Search, Social Media, and Traditional Data Sources to Improve Influenza Surveillance , 2015, PLoS Comput. Biol..
[22] Florian Thiery,et al. Linked COVID-19 Data: Johns Hopkins University (JHU) and European Centre for Disease Prevention and Control (ECDC) , 2020 .
[23] John S. Brownstein,et al. Wikipedia Usage Estimates Prevalence of Influenza-Like Illness in the United States in Near Real-Time , 2014, PLoS Comput. Biol..
[24] S. Scholtes,et al. Empirical prediction intervals revisited , 2014 .
[25] Amy M Bovi. Use of Health-Related Online Sites , 2003, The American journal of bioethics : AJOB.
[26] Alina Deshpande,et al. Global Disease Monitoring and Forecasting with Wikipedia , 2014, PLoS Comput. Biol..
[27] Miguel-Angel Sicilia,et al. Syndromic Surveillance Models Using Web Data: The Case of Influenza in Greece and Italy Using Google Trends , 2017, JMIR public health and surveillance.