Protein–protein interaction and quaternary structure

Abstract Protein–protein recognition plays an essential role in structure and function. Specific non-covalent interactions stabilize the structure of macromolecular assemblies, exemplified in this review by oligomeric proteins and the capsids of icosahedral viruses. They also allow proteins to form complexes that have a very wide range of stability and lifetimes and are involved in all cellular processes. We present some of the structure-based computational methods that have been developed to characterize the quaternary structure of oligomeric proteins and other molecular assemblies and analyze the properties of the interfaces between the subunits. We compare the size, the chemical and amino acid compositions and the atomic packing of the subunit interfaces of protein–protein complexes, oligomeric proteins, viral capsids and protein–nucleic acid complexes. These biologically significant interfaces are generally close-packed, whereas the non-specific interfaces between molecules in protein crystals are loosely packed, an observation that gives a structural basis to specific recognition. A distinction is made within each interface between a core that contains buried atoms and a solvent accessible rim. The core and the rim differ in their amino acid composition and their conservation in evolution, and the distinction helps correlating the structural data with the results of site-directed mutagenesis and in vitro studies of self-assembly.

[1]  Franz Aurenhammer,et al.  Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..

[2]  O. Ptitsyn,et al.  Empirical solvent‐mediated potentials hold for both intra‐molecular and inter‐molecular inter‐residue interactions , 1998, Protein science : a publication of the Protein Society.

[3]  A. Elcock,et al.  Identification of protein oligomerization states by analysis of interface conservation , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[4]  B. Rost,et al.  Analysing six types of protein-protein interfaces. , 2003, Journal of molecular biology.

[5]  Oliviero Carugo,et al.  Protein—protein crystal‐packing contacts , 1997, Protein science : a publication of the Protein Society.

[6]  C Chothia,et al.  Stability and specificity of protein-protein interactions: the case of the trypsin-trypsin inhibitor complexes. , 1976, Journal of molecular biology.

[7]  M. Perutz,et al.  Structure of hemoglobin. , 1960, Brookhaven symposia in biology.

[8]  Alexandre M J J Bonvin,et al.  HADDOCK versus HADDOCK: New features and performance of HADDOCK2.0 on the CAPRI targets , 2007, Proteins.

[9]  Dominique Douguet,et al.  DOCKGROUND system of databases for protein recognition studies: Unbound structures for docking , 2007, Proteins.

[10]  W R Taylor,et al.  Location of ‘continuous’ antigenic determinants in the protruding regions of proteins. , 1986, The EMBO journal.

[11]  Eyke Hüllermeier,et al.  Physicochemical descriptors to discriminate protein–protein interactions in permanent and transient complexes selected by means of machine learning algorithms , 2006, Proteins.

[12]  The architecture of the binding site in redox protein complexes: Implications for fast dissociation , 2004, Proteins.

[13]  P. Chakrabarti,et al.  Conservation and relative importance of residues across protein-protein interfaces , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Burkhard Rost,et al.  ISIS: interaction sites identified from sequence , 2007, Bioinform..

[15]  J. Skolnick,et al.  Benchmarking of dimeric threading and structure refinement , 2006, Proteins.

[16]  P. Bork,et al.  Structure-Based Assembly of Protein Complexes in Yeast , 2004, Science.

[17]  G Schreiber,et al.  Interaction of barnase with its polypeptide inhibitor barstar studied by protein engineering. , 1993, Biochemistry.

[18]  Sandor Vajda,et al.  CAPRI: A Critical Assessment of PRedicted Interactions , 2003, Proteins.

[19]  R. Bahadur,et al.  ProFace: a server for the analysis of the physicochemical features of protein-protein interfaces , 2006, BMC Structural Biology.

[20]  F. Sanger,et al.  The amino-acid sequence in the phenylalanyl chain of insulin. I. The identification of lower peptides from partial hydrolysates. , 1951, The Biochemical journal.

[21]  M. G. Rossmann,et al.  Structure and morphogenesis of bacteriophage T4 , 2003, Cellular and Molecular Life Sciences CMLS.

[22]  J. King,et al.  Nucleation and growth phases in the polymerization of coat and scaffolding subunits into icosahedral procapsid shells. , 1993, Biophysical journal.

[23]  S H Bryant,et al.  Extent and nature of contacts between protein molecules in crystal lattices and between subunits of protein oligomers , 1997, Proteins.

[24]  A J Olson,et al.  Morphology of protein-protein interfaces. , 1998, Structure.

[25]  F. Richards The interpretation of protein structures: total volume, group volume distributions and packing density. , 1974, Journal of molecular biology.

[26]  T. A. Jones,et al.  Structure of satellite tobacco necrosis virus at 3.0 A resolution. , 1982, Journal of molecular biology.

[27]  W. Kabsch,et al.  The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. , 1997, Science.

[28]  A. Sali,et al.  The molecular sociology of the cell , 2007, Nature.

[29]  A. Sali 100,000 protein structures for the biologist , 1998, Nature Structural Biology.

[30]  Sarah A. Teichmann,et al.  Principles of protein-protein interactions , 2002, ECCB.

[31]  C. Dominguez,et al.  HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. , 2003, Journal of the American Chemical Society.

[32]  J. Janin,et al.  Dissecting subunit interfaces in homodimeric proteins , 2003, Proteins.

[33]  H M Berman,et al.  Protein-DNA interactions: A structural analysis. , 1999, Journal of molecular biology.

[34]  Ruth Nussinov,et al.  PatchDock and SymmDock: servers for rigid and symmetric docking , 2005, Nucleic Acids Res..

[35]  R. Nussinov,et al.  Hot regions in protein--protein interactions: the organization and contribution of structurally conserved hot spot residues. , 2005, Journal of molecular biology.

[36]  R. Varadarajan,et al.  Residue depth: a novel parameter for the analysis of protein structure and stability. , 1999, Structure.

[37]  J. Janin,et al.  A dissection of specific and non-specific protein-protein interfaces. , 2004, Journal of molecular biology.

[38]  Sachdev S Sidhu,et al.  The intrinsic contributions of tyrosine, serine, glycine and arginine to the affinity and specificity of antibodies. , 2008, Journal of molecular biology.

[39]  C. Chothia,et al.  Hydrophobic bonding and accessible surface area in proteins , 1974, Nature.

[40]  C. Robinson,et al.  Mass spectrometry of macromolecular assemblies: preservation and dissociation. , 2006, Current opinion in structural biology.

[41]  Z. Weng,et al.  Integrating statistical pair potentials into protein complex prediction , 2007, Proteins.

[42]  F. Crick,et al.  Structure of Small Viruses , 1956, Nature.

[43]  N. Ben-Tal,et al.  ConSurf: an algorithmic tool for the identification of functional regions in proteins by surface mapping of phylogenetic information. , 2001, Journal of molecular biology.

[44]  J. Janin,et al.  Wet and dry interfaces: the role of solvent in protein-protein and protein-DNA recognition. , 1999, Structure.

[45]  A J Olson,et al.  Structural symmetry and protein function. , 2000, Annual review of biophysics and biomolecular structure.

[46]  Emmanuel D Levy,et al.  PiQSi: protein quaternary structure investigation. , 2007, Structure.

[47]  S. Jones,et al.  Analysis of protein-protein interaction sites using surface patches. , 1997, Journal of molecular biology.

[48]  A M J J Bonvin,et al.  Data‐driven docking: HADDOCK's adventures in CAPRI , 2005, Proteins.

[49]  Herbert Edelsbrunner,et al.  Protein-protein interfaces: properties, preferences, and projections. , 2007, Journal of proteome research.

[50]  J. Janin,et al.  Protein-protein recognition. , 1995, Progress in biophysics and molecular biology.

[51]  T. Clackson,et al.  A hot spot of binding energy in a hormone-receptor interface , 1995, Science.

[52]  Joël Janin,et al.  A dissection of the protein-protein interfaces in icosahedral virus capsids. , 2007, Journal of molecular biology.

[53]  P. Bradley,et al.  Toward High-Resolution de Novo Structure Prediction for Small Proteins , 2005, Science.

[54]  J. Thornton,et al.  Diversity of protein–protein interactions , 2003, The EMBO journal.

[55]  A G Leslie,et al.  The rotary mechanism of ATP synthase. , 2000, Current opinion in structural biology.

[56]  B. Lee,et al.  The interpretation of protein structures: estimation of static accessibility. , 1971, Journal of molecular biology.

[57]  Ruth Nussinov,et al.  Geometry‐based flexible and symmetric protein docking , 2005, Proteins.

[58]  H. Wolfson,et al.  Studies of protein‐protein interfaces: A statistical analysis of the hydrophobic effect , 1997, Protein science : a publication of the Protein Society.

[59]  Hongbo Zhu,et al.  NOXclass: prediction of protein-protein interaction types , 2006, BMC Bioinformatics.

[60]  S Vajda,et al.  Extracting hydrophobicity parameters from solute partition and protein mutation/unfolding experiments. , 1995, Protein engineering.

[61]  Herbert Edelsbrunner,et al.  Three-dimensional alpha shapes , 1994, ACM Trans. Graph..

[62]  H. Wolfson,et al.  Prediction of multimolecular assemblies by multiple docking. , 2005, Journal of molecular biology.

[63]  Chris Sander,et al.  The HSSP data base of protein structure-sequence alignments , 1993, Nucleic Acids Res..

[64]  John E. Johnson,et al.  Quasi-equivalent viruses: a paradigm for protein assemblies. , 1997, Journal of molecular biology.

[65]  Chandrajit L. Bajaj,et al.  VIPERdb: a relational database for structural virology , 2005, Nucleic Acids Res..

[66]  Sandor Vajda,et al.  ClusPro: a fully automated algorithm for protein-protein docking , 2004, Nucleic Acids Res..

[67]  C. Ponting,et al.  Sequence analysis of multidomain proteins: past perspectives and future directions. , 2002, Advances in protein chemistry.

[68]  Jeffrey Skolnick,et al.  M-TASSER: an algorithm for protein quaternary structure prediction. , 2008, Biophysical journal.

[69]  S. Teichmann,et al.  Assembly reflects evolution of protein complexes , 2008, Nature.

[70]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[71]  M Gerstein,et al.  Packing at the protein-water interface. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[72]  Robert B. Russell,et al.  3did: interacting protein domains of known three-dimensional structure , 2004, Nucleic Acids Res..

[73]  J L Finney,et al.  Calculation of protein volumes: an alternative to the Voronoi procedure. , 1982, Journal of molecular biology.

[74]  H. Wolfson,et al.  Protein-protein interactions; coupling of structurally conserved residues and of hot spots across interfaces. Implications for docking. , 2004, Structure.

[75]  C. Chothia,et al.  Principles of protein–protein recognition , 1975, Nature.

[76]  Adam Zlotnick,et al.  Theoretical aspects of virus capsid assembly , 2005, Journal of molecular recognition : JMR.

[77]  John E. Johnson,et al.  Structure of a human common cold virus and functional relationship to other picornaviruses , 1985, Nature.

[78]  Robert D. Finn,et al.  iPfam: visualization of protein?Cprotein interactions in PDB at domain and amino acid resolutions , 2005, Bioinform..

[79]  J. Janin,et al.  Revisiting the Voronoi description of protein–protein interfaces , 2006, Protein science : a publication of the Protein Society.

[80]  A G Murzin,et al.  SCOP: a structural classification of proteins database for the investigation of sequences and structures. , 1995, Journal of molecular biology.

[81]  Pinak Chakrabarti,et al.  Peptide segments in protein-protein interfaces , 2007, Journal of Biosciences.

[82]  M. Rossmann,et al.  The role of scaffolding proteins in the assembly of the small, single-stranded DNA virus phiX174. , 1999, Journal of molecular biology.

[83]  Yang Zhang,et al.  TASSER: An automated method for the prediction of protein tertiary structures in CASP6 , 2005, Proteins.

[84]  Joël Janin,et al.  Residue conservation in viral capsid assembly , 2008, Proteins.

[85]  M. Sternberg,et al.  Prediction of protein-protein interactions by docking methods. , 2002, Current opinion in structural biology.

[86]  Alfonso Valencia,et al.  Co‐evolution and co‐adaptation in protein networks , 2008, FEBS letters.

[87]  R. Norel,et al.  Electrostatic aspects of protein-protein interactions. , 2000, Current opinion in structural biology.

[88]  Joël Janin,et al.  The third CAPRI assessment meeting Toronto, Canada, April 20-21, 2007. , 2007, Structure.

[89]  Jeffrey J. Gray,et al.  High-resolution protein-protein docking. , 2006, Current opinion in structural biology.

[90]  O. Lichtarge,et al.  Evolutionary predictions of binding surfaces and interactions. , 2002, Current opinion in structural biology.

[91]  Mark Gerstein,et al.  Calculations of protein volumes: sensitivity analysis and parameter database , 2002, Bioinform..

[92]  Joël Janin Structural genomics: winning the second half of the game. , 2007, Structure.

[93]  C. Chothia,et al.  The atomic structure of protein-protein recognition sites. , 1999, Journal of molecular biology.

[94]  S. Smith‐Gill,et al.  Magnitude of the hydrophobic effect at central versus peripheral sites in protein-protein interfaces. , 2005, Structure.

[95]  J. Janin,et al.  Dissecting protein–RNA recognition sites , 2008, Nucleic acids research.

[96]  S. L. Wong,et al.  A Map of the Interactome Network of the Metazoan C. elegans , 2004, Science.

[97]  H. Kono,et al.  Protein-DNA recognition patterns and predictions. , 2005, Annual review of biophysics and biomolecular structure.

[98]  James R. Knight,et al.  A Protein Interaction Map of Drosophila melanogaster , 2003, Science.

[99]  W. Delano Unraveling hot spots in binding interfaces: progress and challenges. , 2002, Current opinion in structural biology.

[100]  A. Valencia,et al.  In silico two‐hybrid system for the selection of physically interacting protein pairs , 2002, Proteins.

[101]  M Gerstein,et al.  Volume changes on protein folding. , 1994, Structure.

[102]  L. Liljas Virus assembly. , 1999, Current opinion in structural biology.

[103]  A. Poupon Voronoi and Voronoi-related tessellations in studies of protein structure and interaction. , 2004, Current opinion in structural biology.

[104]  J. Changeux,et al.  Allosteric proteins and cellular control systems. , 1963, Journal of molecular biology.

[105]  J. Janin,et al.  Analysis and prediction of protein quaternary structure. , 2010, Methods in molecular biology.

[106]  Gabriel Waksman Proteomics and protein-protein interactions : biology, chemistry, bionformatics, and drug design , 2005 .

[107]  S. Pongor,et al.  A normalized root‐mean‐spuare distance for comparing protein three‐dimensional structures , 2001, Protein science : a publication of the Protein Society.

[108]  Pinak Chakrabarti,et al.  Interresidue contacts in proteins and protein-protein interfaces and their use in characterizing the homodimeric interface. , 2005, Journal of proteome research.

[109]  R. Mariuzza,et al.  Molecular recognition in antibody-antigen complexes. , 2002, Advances in protein chemistry.

[110]  B. Alberts The Cell as a Collection of Protein Machines: Preparing the Next Generation of Molecular Biologists , 1998, Cell.

[111]  C. Chothia,et al.  The structure of protein-protein recognition sites. , 1990, The Journal of biological chemistry.

[112]  O. Dym,et al.  The modular architecture of protein-protein binding interfaces. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[113]  T. Bhat,et al.  Bound water molecules and conformational stabilization help mediate an antigen-antibody association. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[114]  Simona Francese,et al.  A simple, RNA-mediated allosteric switch controls the pathway to formation of a T=3 viral capsid. , 2007, Journal of molecular biology.

[115]  Gideon Schreiber,et al.  Electrostatic design of protein-protein association rates. , 2006, Methods in molecular biology.

[116]  B. Trus,et al.  Virus maturation: dynamics and mechanism of a stabilizing structural transition that leads to infectivity. , 2005, Current opinion in structural biology.

[117]  R. Laskowski SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions. , 1995, Journal of molecular graphics.

[118]  F. Sanger,et al.  The amino-acid sequence in the glycyl chain of insulin. I. The identification of lower peptides from partial hydrolysates. , 1953, The Biochemical journal.

[119]  D. Eisenberg,et al.  Protein function in the post-genomic era , 2000, Nature.

[120]  J. Thornton,et al.  Discriminating between homodimeric and monomeric proteins in the crystalline state , 2000, Proteins.

[121]  A. R. Tammar,et al.  Protein Structure and Enzyme Activity , 1985 .

[122]  Z. Weng,et al.  Protein–protein docking benchmark version 3.0 , 2008, Proteins.

[123]  M. Sternberg,et al.  Modelling protein docking using shape complementarity, electrostatics and biochemical information. , 1997, Journal of molecular biology.

[124]  Andrey Tovchigrechko,et al.  GRAMM-X public web server for protein–protein docking , 2006, Nucleic Acids Res..

[125]  Olivier Lichtarge,et al.  Evolutionary trace report_maker: a new type of service for comparative analysis of proteins , 2006, Bioinform..

[126]  B. Chait,et al.  The molecular architecture of the nuclear pore complex , 2007, Nature.

[127]  K Nadassy,et al.  Structural features of protein-nucleic acid recognition sites. , 1999, Biochemistry.

[128]  S. Wodak,et al.  Assessment of blind predictions of protein–protein interactions: Current status of docking methods , 2003, Proteins.

[129]  Z. Weng,et al.  Structure, function, and evolution of transient and obligate protein-protein interactions. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[130]  Sarah A. Teichmann,et al.  3D Complex: A Structural Classification of Protein Complexes , 2006, PLoS Comput. Biol..

[131]  Chris Sander,et al.  The HSSP database of protein structure-sequence alignments , 1993, Nucleic Acids Res..

[132]  K. Sharp,et al.  Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons , 1991, Proteins.

[133]  H. Wolfson,et al.  Correlated mutations: Advances and limitations. A study on fusion proteins and on the Cohesin‐Dockerin families , 2006, Proteins.

[134]  Ruth Nussinov,et al.  Principles of docking: An overview of search algorithms and a guide to scoring functions , 2002, Proteins.

[135]  S. Harrison,et al.  Tomato bushy stunt virus at 2.9 Å resolution , 1978, Nature.

[136]  I Tomás-Oliveira,et al.  Standard atomic volumes in double-stranded DNA and packing in protein--DNA interfaces. , 2001, Nucleic acids research.

[137]  Helen M Berman,et al.  Large macromolecular complexes in the Protein Data Bank: a status report. , 2005, Structure.

[138]  Zhiping Weng,et al.  Protein-protein docking: overview and performance analysis. , 2008, Methods in molecular biology.

[139]  Martin Zacharias,et al.  Protein–protein docking in CAPRI using ATTRACT to account for global and local flexibility , 2007, Proteins.

[140]  Denise Gorse,et al.  Morphological aspects of oligomeric protein structures. , 2005, Progress in biophysics and molecular biology.

[141]  Pinak Chakrabarti,et al.  Macromolecular recognition in the Protein Data Bank , 2006, Acta crystallographica. Section D, Biological crystallography.

[142]  K. Stiasny,et al.  Structure of a flavivirus envelope glycoprotein in its low‐pH‐induced membrane fusion conformation , 2004, The EMBO journal.

[143]  Julie Bernauer,et al.  DiMoVo: a Voronoi tessellation-based method for discriminating crystallographic and biological protein-protein interactions , 2008, Bioinform..

[144]  A. Valencia,et al.  Computational methods for the prediction of protein interactions. , 2002, Current opinion in structural biology.

[145]  Jonathan J. Ellis,et al.  Protein–RNA interactions: Structural analysis and functional classes , 2006, Proteins.

[146]  Shoshana J. Wodak,et al.  Protein modules and protein-protein interaction , 2003 .

[147]  Lars Malmström,et al.  Structure prediction for CASP7 targets using extensive all‐atom refinement with Rosetta@home , 2007, Proteins.

[148]  V S Reddy,et al.  Energetics of quasiequivalence: computational analysis of protein-protein interactions in icosahedral viruses. , 1998, Biophysical journal.

[149]  E Westhof,et al.  Statistical analysis of atomic contacts at RNA–protein interfaces , 2001, Journal of molecular recognition : JMR.

[150]  A. Bogan,et al.  Anatomy of hot spots in protein interfaces. , 1998, Journal of molecular biology.

[151]  J M Thornton,et al.  Protein-protein interactions: a review of protein dimer structures. , 1995, Progress in biophysics and molecular biology.

[152]  R. Russell,et al.  The relationship between sequence and interaction divergence in proteins. , 2003, Journal of molecular biology.

[153]  Robert B. Russell,et al.  InterPreTS: protein Interaction Prediction through Tertiary Structure , 2003, Bioinform..

[154]  A. Klug,et al.  Physical principles in the construction of regular viruses. , 1962, Cold Spring Harbor symposia on quantitative biology.

[155]  T. Dokland Freedom and restraint: themes in virus capsid assembly. , 2000, Structure.

[156]  Zhiping Weng,et al.  M-ZDOCK: a grid-based approach for Cn symmetric multimer docking , 2005, Bioinform..

[157]  Jean-François Sadoc,et al.  Voro3D: 3D Voronoi tessellations applied to protein structures , 2005, Bioinform..

[158]  Rama Ranganathan,et al.  Knowledge-based potentials in protein design. , 2006, Current opinion in structural biology.

[159]  S. Wodak,et al.  Deviations from standard atomic volumes as a quality measure for protein crystal structures. , 1996, Journal of molecular biology.

[160]  R. Russell,et al.  Protein complexes: structure prediction challenges for the 21st century. , 2005, Current opinion in structural biology.

[161]  F. Cohen,et al.  An evolutionary trace method defines binding surfaces common to protein families. , 1996, Journal of molecular biology.

[162]  G. Wiegand,et al.  Amino acid sequence, crystallization and structure determination of reduced and oxidized cytochrome c6 from the green alga Scenedesmus obliquus. , 1999, Journal of molecular biology.

[163]  H. Wolfson,et al.  Shape complementarity at protein–protein interfaces , 1994, Biopolymers.

[164]  K. Henrick,et al.  Inference of macromolecular assemblies from crystalline state. , 2007, Journal of molecular biology.

[165]  J Chomilier,et al.  Voronoï tessellation reveals the condensed matter character of folded proteins. , 2000, Physical review letters.

[166]  Zoran Obradovic,et al.  ProtBuD: a database of biological unit structures of protein families and superfamilies , 2006, Bioinform..

[167]  L. Pauling,et al.  Configuration of Polypeptide Chains , 1951, Nature.

[168]  I. M. Klotz,et al.  Subunit constitution of proteins: a table. , 1975, Archives of biochemistry and biophysics.

[169]  Sean R. Collins,et al.  Global landscape of protein complexes in the yeast Saccharomyces cerevisiae , 2006, Nature.

[170]  Christopher L. McClendon,et al.  Reaching for high-hanging fruit in drug discovery at protein–protein interfaces , 2007, Nature.

[171]  Susan Jones,et al.  Evaluating conformational changes in protein structures binding RNA , 2007, Proteins.

[172]  C. Chothia,et al.  The Packing Density in Proteins: Standard Radii and Volumes , 1999 .

[173]  M J Sternberg,et al.  Use of pair potentials across protein interfaces in screening predicted docked complexes , 1999, Proteins.

[174]  J. Janin,et al.  Dissecting protein–protein recognition sites , 2002, Proteins.

[175]  J. Thornton,et al.  Satisfying hydrogen bonding potential in proteins. , 1994, Journal of molecular biology.

[176]  Miriam Eisenstein,et al.  Modeling oligomers with Cn or Dn symmetry: Application to CAPRI target 10 , 2005, Proteins.

[177]  J. Skolnick,et al.  Automated structure prediction of weakly homologous proteins on a genomic scale. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[178]  Michael Nilges,et al.  Flexibility and conformational entropy in protein-protein binding. , 2006, Structure.

[179]  B. Braden,et al.  Estimation of the hydrophobic effect in an antigen-antibody protein-protein interface. , 2000, Biochemistry.

[180]  J. Thornton,et al.  PQS: a protein quaternary structure file server. , 1998, Trends in biochemical sciences.

[181]  J. Thornton,et al.  Protein–protein interfaces: Analysis of amino acid conservation in homodimers , 2001, Proteins.

[182]  Kalle Gehring,et al.  Structural basis for ubiquitin-mediated dimerization and activation of the ubiquitin protein ligase Cbl-b. , 2007, Molecular cell.

[183]  N. Ben-Tal,et al.  Residue frequencies and pairing preferences at protein–protein interfaces , 2001, Proteins.

[184]  A M Lesk,et al.  Interior and surface of monomeric proteins. , 1987, Journal of molecular biology.

[185]  Daniel R. Caffrey,et al.  Are protein–protein interfaces more conserved in sequence than the rest of the protein surface? , 2004, Protein science : a publication of the Protein Society.

[186]  David Baker,et al.  RosettaDock in CAPRI rounds 6–12 , 2007, Proteins.

[187]  Kurt S. Thorn,et al.  ASEdb: a database of alanine mutations and their effects on the free energy of binding in protein interactions , 2001, Bioinform..

[188]  O. Schueler‐Furman,et al.  Progress in Modeling of Protein Structures and Interactions , 2005, Science.

[189]  M. Nishiyama,et al.  Determinants of protein thermostability observed in the 1.9-A crystal structure of malate dehydrogenase from the thermophilic bacterium Thermus flavus. , 1993, Biochemistry.

[190]  Francis Rodier,et al.  Protein–protein interaction at crystal contacts , 1995, Proteins.

[191]  A G Leslie,et al.  Molecular architecture of the rotary motor in ATP synthase. , 1999, Science.

[192]  P. Argos An investigation of protein subunit and domain interfaces. , 1988, Protein engineering.

[193]  C Chothia,et al.  Surface, subunit interfaces and interior of oligomeric proteins. , 1988, Journal of molecular biology.

[194]  Joël Janin,et al.  Specific versus non-specific contacts in protein crystals , 1997, Nature Structural Biology.

[195]  M. Rossmann,et al.  The refined structure of human rhinovirus 16 at 2.15 A resolution: implications for the viral life cycle. , 1997, Structure.

[196]  J. Changeux,et al.  ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. , 1965, Journal of molecular biology.

[197]  H. Hamm,et al.  The 2.0 Å crystal structure of a heterotrimeric G protein , 1996, Nature.

[198]  R. Huber,et al.  X‐ray crystal structure of the complex of human leukocyte elastase (PMN elastase) and the third domain of the turkey ovomucoid inhibitor. , 1986, The EMBO journal.

[199]  Janet M. Thornton,et al.  Automatic inference of protein quaternary structure from crystals , 2003 .

[200]  Gideon Schreiber,et al.  The molecular architecture of protein-protein binding sites. , 2005, Current opinion in structural biology.

[201]  J. Thornton,et al.  Structural characterisation and functional significance of transient protein-protein interactions. , 2003, Journal of molecular biology.

[202]  J. Janin Assessing predictions of protein–protein interaction: The CAPRI experiment , 2005, Protein science : a publication of the Protein Society.

[203]  D. Stuart,et al.  The atomic structure of the bluetongue virus core , 1998, Nature.

[204]  Frank Alber,et al.  A structural perspective on protein-protein interactions. , 2004, Current opinion in structural biology.

[205]  M. L. Connolly Solvent-accessible surfaces of proteins and nucleic acids. , 1983, Science.

[206]  Garland R. Marshall,et al.  Protein-Protein Docking Methods , 2005 .

[207]  P. Argos,et al.  Cavities and packing at protein interfaces , 1994, Protein science : a publication of the Protein Society.

[208]  S. Wodak,et al.  Docking and scoring protein complexes: CAPRI 3rd Edition , 2007, Proteins.

[209]  O. Lichtarge,et al.  Character and evolution of protein–protein interfaces , 2005, Physical biology.

[210]  B L Trus,et al.  The making and breaking of symmetry in virus capsid assembly: glimpses of capsid biology from cryoelectron microscopy , 1997, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[211]  J. Janin,et al.  Crystal packing in six crystal forms of pancreatic ribonuclease. , 1992, Journal of molecular biology.

[212]  O. Lichtarge,et al.  On itinerant water molecules and detectability of protein-protein interfaces through comparative analysis of homologues. , 2007, Journal of molecular biology.

[213]  Jeffrey J. Gray,et al.  Incorporating biochemical information and backbone flexibility in RosettaDock for CAPRI rounds 6–12 , 2007, Proteins.

[214]  D L Caspar,et al.  Movement and self-control in protein assemblies. Quasi-equivalence revisited. , 1980, Biophysical journal.

[215]  Herbert Edelsbrunner,et al.  Interface surfaces for protein-protein complexes , 2004, JACM.

[216]  Ilya A Vakser,et al.  Docking of protein models , 2002, Protein science : a publication of the Protein Society.

[217]  C Chothia,et al.  Haemoglobin: the structural changes related to ligand binding and its allosteric mechanism. , 1979, Journal of molecular biology.

[218]  M. Perutz Stereochemistry of cooperative effects in haemoglobin. , 1970, Nature.

[219]  Marcin Król,et al.  Implicit flexibility in protein docking: Cross‐docking and local refinement , 2007, Proteins.

[220]  P. Bork,et al.  Proteome survey reveals modularity of the yeast cell machinery , 2006, Nature.

[221]  Alex Bateman,et al.  The InterPro database, an integrated documentation resource for protein families, domains and functional sites , 2001, Nucleic Acids Res..

[222]  S. Wodak,et al.  Assessment of CAPRI predictions in rounds 3–5 shows progress in docking procedures , 2005, Proteins.

[223]  Mainak Guharoy,et al.  Secondary structure based analysis and classification of biological interfaces: identification of binding motifs in protein-protein interactions , 2007, Bioinform..

[224]  Jeffrey J. Gray,et al.  Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations. , 2003, Journal of molecular biology.

[225]  M. Levitt,et al.  The volume of atoms on the protein surface: calculated from simulation, using Voronoi polyhedra. , 1995, Journal of molecular biology.

[226]  Pinak Chakrabarti,et al.  Hydration of protein–protein interfaces , 2005, Proteins.

[227]  John E. Johnson,et al.  Icosahedral RNA virus structure. , 1989, Annual review of biochemistry.

[228]  J. Philpot The Ultracentrifuge , 1943, Nature.

[229]  S. Jones,et al.  Protein-RNA interactions: a structural analysis. , 2001, Nucleic acids research.

[230]  R. Hendrix,et al.  Assembly in vitro of bacteriophage HK97 proheads. , 1995, Journal of molecular biology.

[231]  R. Nussinov,et al.  Protein–protein interactions: Structurally conserved residues distinguish between binding sites and exposed protein surfaces , 2003, Proceedings of the National Academy of Sciences of the United States of America.