GRB060218 AS A TIDAL DISRUPTION OF A WHITE DWARF BY AN INTERMEDIATE-MASS BLACK HOLE

A highly unusual pair of a gamma-ray burst (GRB) GRB060218 and an associated supernova SN2006aj has puzzled theorists for years. A supernova shock breakout and a jet from a newborn stellar mass compact object were put forward to explain its multiwavelength signature. We propose that the source is naturally explained by another channel, a tidal disruption of a white dwarf (WD) by an intermediate mass black hole (IMBH). The tidal disruption is accompanied by a tidal pinching, which leads to the ignition of a WD and a supernova. Some debris falls back onto the IMBH, forms a disk, which quickly amplifies the magnetic field, and launches a jet. We successfully fit soft X-ray spectrum with the Comptonized blackbody emission from a jet photosphere. The optical/UV emission is consistent with self-absorbed synchrotron from the expanding jet front. The accretion rate temporal dependence _ M(t) in a tidal disruption provides a good fit to soft X-ray lightcurve. The IMBH mass is found to be about 10 4 M in three independent estimates: (1) fitting tidal disruption _ M(t) to soft X-ray lightcurve; (2) computing the jet base radius in a jet photospheric emission model; (3) inferring the central BH mass based on a host dwarf galaxy stellar mass. The supernova position is consistent with the center of the host galaxy, while low supernova ejecta mass is consistent with a WD mass. High expected rate of tidal disruptions in dwarf galaxies is consistent with one source observed by Swift satellite over several years at GRB060218 distance of 150 Mpc. The encounters with the WDs provide a lot of fuel for IMBH growth. Subject headings: accretion ‐ black hole physics ‐ gamma rays: bursts ‐ radiation mechanisms: general ‐ supernovae: general ‐ X-rays: individual (GRB060218)

[1]  M. Lister,et al.  Jet opening angles and gamma-ray brightness of AGN , 2009, 0910.1813.

[2]  Pair-Instability Supernovae, Gravity Waves, and Gamma-Ray Transients , 2000, astro-ph/0007176.

[3]  On the Radial Structure of Radiatively Inefficient Accretion Flows with Convection , 2001, astro-ph/0110371.

[4]  E. Waxman,et al.  GRB 060218: A Relativistic Supernova Shock Breakout , 2007, astro-ph/0702450.

[5]  Nathaniel R. Butler,et al.  A Possible Relativistic Jetted Outburst from a Massive Black Hole Fed by a Tidally Disrupted Star , 2011, Science.

[6]  B. Metzger,et al.  Afterglow model for the radio emission from the jetted tidal disruption candidate Swift J1644+57 , 2011, 1110.1111.

[7]  E. Quataert,et al.  Convection-dominated Accretion Flows , 1999, astro-ph/9912440.

[8]  Toshikazu Ebisuzaki,et al.  MASSIVE BLACK HOLES IN STAR CLUSTERS. II. REALISTIC CLUSTER MODELS , 2004 .

[9]  Ryan Chornock,et al.  Birth of a relativistic outflow in the unusual γ-ray transient Swift J164449.3+573451 , 2011, Nature.

[10]  Takanori Sakamoto,et al.  Low-Luminosity GRB 060218: A Collapsar Jet from a Neutron Star, Leaving a Magnetar as a Remnant? , 2007 .

[11]  L. A. Antonelli,et al.  The Metamorphosis of Supernova SN 2008D/XRF 080109: A Link Between Supernovae and GRBs/Hypernovae , 2008, Science.

[12]  S. Colgate Early gamma rays from supernovae , 1974 .

[13]  A. Tchekhovskoy,et al.  Simulations of magnetized discs around black holes: Effects of black hole spin, disc thickness and magnetic field geometry , 2010, 1003.0966.

[14]  E. Nakar,et al.  RELATIVISTIC SHOCK BREAKOUTS—A VARIETY OF GAMMA-RAY FLARES: FROM LOW-LUMINOSITY GAMMA-RAY BURSTS TO TYPE Ia SUPERNOVAE , 2011, 1106.2556.

[15]  J. Luminet,et al.  Tidal squeezing of stars by Schwarzschild black holes , 1985 .

[16]  J. Bloom,et al.  Keck and European Southern Observatory Very Large Telescope View of the Symmetry of the Ejecta of the XRF/SN 2006aj , 2007 .

[17]  Bing Zhang,et al.  CONSTRAINING GAMMA-RAY BURST INITIAL LORENTZ FACTOR WITH THE AFTERGLOW ONSET FEATURE AND DISCOVERY OF A TIGHT Γ0–Eγ,iso CORRELATION , 2009, 0912.4800.

[18]  A. Zezas,et al.  Chandra Observations of “The Antennae” Galaxies (NGC 4038/9) , 2001 .

[19]  J. Guillochon,et al.  THE DYNAMICS, APPEARANCE, AND DEMOGRAPHICS OF RELATIVISTIC JETS TRIGGERED BY TIDAL DISRUPTION OF STARS IN QUIESCENT SUPERMASSIVE BLACK HOLES , 2012, 1205.1507.

[20]  E. Ramirez-Ruiz,et al.  TIDAL DISRUPTION AND IGNITION OF WHITE DWARFS BY MODERATELY MASSIVE BLACK HOLES , 2008, 0808.2143.

[21]  G. Fabbiano Chandra Observations of The Antennae Galaxies (NGC 4038/39) , 2001 .

[22]  E. Waxman,et al.  FAST RADIATION MEDIATED SHOCKS AND SUPERNOVA SHOCK BREAKOUTS , 2009, 0902.4708.

[23]  J. Cannizzo,et al.  GRB 110328A/SWIFT J164449.3+573451: THE TIDAL OBLITERATION OF A DEEPLY PLUNGING STAR? , 2011, 1105.2816.

[24]  T. Piran,et al.  ARE LOW-LUMINOSITY GAMMA-RAY BURSTS GENERATED BY RELATIVISTIC JETS? , 2011, 1107.1346.

[25]  Ralf Bender,et al.  The Demography of massive dark objects in galaxy centers , 1997, astro-ph/9708072.

[26]  P. McMillan,et al.  Mass models of the Milky Way , 2011, 1102.4340.

[27]  G. Ghisellini,et al.  Peak energy of the prompt emission of long gamma-ray bursts versus their fluence and peak flux , 2008, 0807.4931.

[28]  E. O. Ofek,et al.  An Extremely Luminous Panchromatic Outburst from the Nucleus of a Distant Galaxy , 2011, Science.

[29]  R. Foley,et al.  IMPROVED DISTANCES TO TYPE Ia SUPERNOVAE WITH TWO SPECTROSCOPIC SUBCLASSES , 2009, 0906.1616.

[30]  L. Ho,et al.  A 20,000 M☉ Black Hole in the Stellar Cluster G1 , 2002, astro-ph/0209313.

[31]  K. Kotake,et al.  SPECIAL RELATIVISTIC SIMULATIONS OF MAGNETICALLY DOMINATED JETS IN COLLAPSING MASSIVE STARS , 2007, 0712.1949.

[32]  E. Ofek,et al.  An extremely luminous X-ray outburst at the birth of a supernova , 2008, Nature.

[33]  G. Rybicki,et al.  Radiative processes in astrophysics , 1979 .

[34]  A. Marconi,et al.  The Relation between Black Hole Mass, Bulge Mass, and Near-Infrared Luminosity , 2003, astro-ph/0304274.

[35]  D. Frail,et al.  CALCIUM-RICH GAP TRANSIENTS IN THE REMOTE OUTSKIRTS OF GALAXIES , 2011, 1111.6109.

[36]  Princeton,et al.  General relativistic magnetohydrodynamic simulations of magnetically choked accretion flows around black holes , 2012, 1201.4163.

[37]  Lev Titarchuk,et al.  GENERALIZED COMPTONIZATION MODELS AND APPLICATION TO THE RECENT HIGH-ENERGY OBSERVATIONS , 1994 .

[38]  Nathaniel R. Butler,et al.  On the Early-Time X-Ray Spectra of Swift Afterglows. I. Evidence for Anomalous Soft X-Ray Emission , 2006, astro-ph/0604083.

[39]  P. Meszaros Gamma-ray bursts , 1998 .

[40]  D. Giannios Prompt emission spectra from the photosphere of a GRB , 2006, astro-ph/0602397.

[41]  R. Chevalier,et al.  Shock Breakout Emission from a Type Ib/c Supernova: XRT 080109/SN 2008D , 2008, 0806.0371.

[42]  A. R. King,et al.  Accretion disc viscosity: how big is alpha? , 2007 .

[43]  H. Ferguson,et al.  Population Studies in Groups and Clusters of Galaxies. IV. Comparison of the Luminosity Functions and Morphological-Type Distributions in Seven Nearby Groups , 1991 .

[44]  Ralf Bender,et al.  A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion , 2000, astro-ph/0006289.

[45]  Cosmology,et al.  Magnetohydrodynamic simulations of gamma-ray burst jets: Beyond the progenitor star , 2009, 0909.0011.

[46]  D. Giannios The peak energy of dissipative GRB photospheres , 2011, 1111.4258.

[47]  Saul A. Teukolsky,et al.  White Dwarfs and Neutron Stars: The Physics of Compact Objects , 1983 .

[48]  S. Rosswog,et al.  THE STAR INGESTING LUMINOSITY OF INTERMEDIATE-MASS BLACK HOLES IN GLOBULAR CLUSTERS , 2008, 0808.3847.

[49]  Jean-Luc Starck,et al.  Astronomical Data Analysis , 2007 .

[50]  Martin J. Rees,et al.  The Observable Effects of a Photospheric Component on GRB and XRF Prompt Emission Spectrum , 2006 .

[51]  Martin J. Rees,et al.  Formation of supermassive black holes by direct collapse in pre-galactic haloes , 2006, astro-ph/0602363.

[52]  P. Berlind,et al.  Early-Time Photometry and Spectroscopy of the Fast Evolving SN 2006aj Associated with GRB 060218 , 2006 .

[53]  K. Subramanian,et al.  Astrophysical magnetic field and nonlinear dynamo theory , 2004, astro-ph/0405052.

[54]  J. Cannizzo,et al.  The Disk Accretion of a Tidally Disrupted Star onto a Massive Black Hole , 1990 .

[55]  The Efficiency of Globular Cluster Formation , 1999, astro-ph/9901283.

[56]  J. M. Stone,et al.  SUSTAINED MAGNETOROTATIONAL TURBULENCE IN LOCAL SIMULATIONS OF STRATIFIED DISKS WITH ZERO NET MAGNETIC FLUX , 2009, 0909.1570.

[57]  Harvard-Smithsonian Center for Astrophysics,et al.  Discovery of a Luminous, Variable, Off-Center Source in the Nucleus of M82 with the Chandra High-Resolution Camera , 2000, astro-ph/0009250.

[58]  R. Penna,et al.  SAGITTARIUS A* ACCRETION FLOW AND BLACK HOLE PARAMETERS FROM GENERAL RELATIVISTIC DYNAMICAL AND POLARIZED RADIATIVE MODELING , 2010, 1007.4832.

[59]  E. Pian,et al.  SN 2006aj Associated with XRF 060218 at Late Phases: Nucleosynthesis Signature of a Neutron Star-driven Explosion , 2007, astro-ph/0703107.

[60]  J. Madej,et al.  A catalogue of isolated massive white dwarfs. Mass distribution of massive stars , 2004 .

[61]  F. Schweizer,et al.  ROSAT HRI Observations of NGC 4038/4039, “The Antennae” Galaxies , 1997 .

[62]  M. Servillat,et al.  THE COOL ACCRETION DISK IN ESO 243-49 HLX-1: FURTHER EVIDENCE OF AN INTERMEDIATE-MASS BLACK HOLE , 2011, 1104.2614.

[63]  Saclay,et al.  The expected thermal precursors of gamma-ray bursts in the internal shock model , 2002, astro-ph/0207456.

[64]  M. Miller,et al.  Growth of Intermediate-Mass Black Holes in Globular Clusters , 2004, astro-ph/0402532.

[65]  J. Greene Low-mass black holes as the remnants of primordial black hole formation , 2012, Nature Communications.

[66]  Nozomu Tominaga,et al.  A neutron-star-driven X-ray flash associated with supernova SN 2006aj , 2006, Nature.

[67]  T. Piran,et al.  The interpretation and implication of the afterglow of GRB 060218 , 2006, astro-ph/0604016.

[68]  M. Nauenberg,et al.  ANALYTIC APPROXIMATIONS TO THE MASS--RADIUS RELATION AND ENERGY OF ZERO- TEMPERATURE STARS. , 1972 .

[69]  Felix Ryde,et al.  A THEORY OF MULTICOLOR BLACKBODY EMISSION FROM RELATIVISTICALLY EXPANDING PLASMAS , 2010, 1008.4590.

[70]  Maochun Wu,et al.  NUMERICAL SIMULATION OF HOT ACCRETION FLOWS. I. A LARGE RADIAL DYNAMICAL RANGE AND THE DENSITY PROFILE OF ACCRETION FLOW , 2012, 1206.4157.

[71]  S. Woosley,et al.  Gamma-Ray Bursts and Type Ic Supernova SN 1998bw , 1998, astro-ph/9806299.

[72]  Pierre Astier,et al.  Supernova Shock Breakout from a Red Supergiant , 2008, Science.

[73]  Paul S. Smith,et al.  Polarimetric Observations of 15 Active Galactic Nuclei at High Frequencies: Jet Kinematics from Bimonthly Monitoring with the Very Long Baseline Array , 2005, astro-ph/0502501.

[74]  Ramesh Narayan,et al.  Mass fall-back and accretion in the central engine of gamma-ray bursts , 2008, 0807.0441.

[75]  A. J. Levan,et al.  The host galaxies of core‐collapse supernovae and gamma‐ray bursts , 2010, 1001.5042.

[76]  L. A. Antonelli,et al.  A pr 2 01 1 Discovery of the Onset of Rapid Accretion by a Dormant Massive Black Hole , 2013 .

[77]  M. Gilfanov,et al.  Lighthouses of the universe : the most luminous celestial objects and their use for cosmology : proceedings of the MPA/ESO/MPE/USM Joint Astronomy Conference held in Garching, Germany, 6-10 August 2001 , 2002 .

[78]  J. Hawley,et al.  A powerful local shear instability in weakly magnetized disks. I - Linear analysis. II - Nonlinear evolution , 1990 .

[79]  E. Quataert,et al.  Optical Flares from the Tidal Disruption of Stars by Massive Black Holes , 2009, Proceedings of the International Astronomical Union.

[80]  M. Kesden Tidal disruption rate of stars by spinning supermassive black holes , 2011, 1109.6329.

[81]  J. Lasota,et al.  Slim Accretion Disks , 1988 .

[82]  Juri Poutanen,et al.  The Two-Phase Pair Corona Model for Active Galactic Nuclei and X-ray Binaries: How to Obtain Exact Solutions , 1996 .

[83]  S. R. Kulkarni,et al.  The Observed Offset Distribution of Gamma-Ray Bursts from Their Host Galaxies: A Robust Clue to the Nature of the Progenitors , 2000, astro-ph/0010176.

[84]  Enrico Ramirez-Ruiz,et al.  HYDRODYNAMICAL SIMULATIONS TO DETERMINE THE FEEDING RATE OF BLACK HOLES BY THE TIDAL DISRUPTION OF STARS: THE IMPORTANCE OF THE IMPACT PARAMETER AND STELLAR STRUCTURE , 2012, 1206.2350.

[85]  D. A. Kann,et al.  An optical supernova associated with the X-ray flash XRF 060218 , 2006, Nature.

[86]  T. Piran,et al.  SWIFT J1644+57: A WHITE DWARF TIDALLY DISRUPTED BY A 104 M☉ BLACK HOLE? , 2011, 1106.0923.

[87]  P. Giommi,et al.  Relativistic jet activity from the tidal disruption of a star by a massive black hole , 2011, Nature.

[88]  G. Ghirlanda,et al.  Did we observe the supernova shock breakout in GRB 060218 , 2007, 0707.0689.

[89]  R. Blandford,et al.  Hydromagnetic flows from accretion discs and the production of radio jets , 1982 .

[90]  M. Rees BLACK HOLE MODELS FOR ACTIVE GALACTIC NUCLEI , 1984 .

[91]  James M. Stone,et al.  Three-dimensional magnetohydrodynamical simulations of vertically stratified accretion disks , 1996 .

[92]  J. Cannizzo,et al.  A NEW PARADIGM FOR GAMMA-RAY BURSTS: LONG-TERM ACCRETION RATE MODULATION BY AN EXTERNAL ACCRETION DISK , 2009, 0901.3564.

[93]  M. J. Rees,et al.  Dissipative photosphere models of gamma-ray bursts and X-ray flashes , 2005 .

[94]  P. Moller,et al.  The nature of the dwarf starforming galaxy associated with GRB 060218/SN 2006aj , 2007 .

[95]  Opening angles, Lorentz factors and confinement of X-ray binary jets , 2006, astro-ph/0601482.

[96]  V. Usov,et al.  Millisecond pulsars with extremely strong magnetic fields as a cosmological source of γ-ray bursts , 1992 .

[97]  J. Angel Magnetic White Dwarfs , 1976 .

[98]  J. Silverman,et al.  THE BLACK HOLE–BULGE MASS RELATION OF ACTIVE GALACTIC NUCLEI IN THE EXTENDED CHANDRA DEEP FIELD-SOUTH SURVEY , 2012, 1212.2999.

[99]  B. Metzger Nuclear-dominated accretion and subluminous supernovae from the merger of a white dwarf with a neutron star or black hole , 2011, 1105.6096.

[100]  A. Pe’er Temporal Evolution of Thermal Emission from Relativistically Expanding Plasma , 2008, 0802.0725.

[101]  E. Quataert,et al.  Spectroscopic Signatures of the Tidal Disruption of Stars by Massive Black Holes , 2010, 1008.4131.

[102]  T. Roberts,et al.  EVIDENCE FOR A STELLAR DISRUPTION BY AN INTERMEDIATE-MASS BLACK HOLE IN AN EXTRAGALACTIC GLOBULAR CLUSTER , 2009, 0908.1115.

[103]  M. Rees,et al.  Unsteady outflow models for cosmological gamma-ray bursts , 1994, astro-ph/9404038.

[104]  E. Rol,et al.  The GRB 060218/SN 2006aj event in the context of other gamma-ray burst supernovae , 2006, astro-ph/0605058.

[105]  University of Cambridge,et al.  Stellar disruption by a supermassive black hole: is the light curve really proportional to t -5/3 ? , 2008, 0810.1288.

[106]  R. Blandford,et al.  Stability of relativistic jets from rotating, accreting black holes via fully three-dimensional magnetohydrodynamic simulations , 2008, 0812.1060.

[107]  J. Mckinney,et al.  Total and Jet Blandford-Znajek Power in the Presence of an Accretion Disk , 2005, astro-ph/0506367.

[108]  M. Rees,et al.  Steep Slopes and Preferred Breaks in Gamma-Ray Burst Spectra: The Role of Photospheres and Comptonization , 1999 .

[109]  Michael J. Kurtz,et al.  MEASURING THE ULTIMATE HALO MASS OF GALAXY CLUSTERS: REDSHIFTS AND MASS PROFILES FROM THE HECTOSPEC CLUSTER SURVEY (HeCS) , 2012, 1209.3786.

[110]  Li-Xin Li Shock breakout in Type Ibc supernovae and application to GRB 060218/SN 2006aj , 2007 .

[111]  Esac,et al.  Detection of optical linear polarization in the SN2006aj/XRF060218 non-spherical expansion , 2006, astro-ph/0609761.

[112]  Martin J. Rees,et al.  ApJ, in press Preprint typeset using L ATEX style emulateapj v. 04/03/99 MASSIVE BLACK HOLES AS POPULATION III REMNANTS , 2001 .

[114]  D. Eichler,et al.  A Compact Fireball Model of Gamma-Ray Bursts , 1999, astro-ph/9903103.

[115]  SDSS J160531.84+174826.1: A dwarf disk galaxy with an intermediate-mass black hole , 2006, astro-ph/0610145.

[116]  First Stars, Very Massive Black Holes, and Metals , 2001, astro-ph/0111341.

[117]  A. Loeb,et al.  A TWO-COMPONENT JET MODEL FOR THE TIDAL DISRUPTION EVENT SWIFT J164449.3+573451 , 2012, 1211.5120.

[118]  Lifan Wang,et al.  Asymmetric Supernovae, Pulsars, Magnetars, and Gamma-Ray Bursts , 2000 .

[119]  C. Reynolds,et al.  LOW-FREQUENCY OSCILLATIONS IN GLOBAL SIMULATIONS OF BLACK HOLE ACCRETION , 2010, 1009.1882.

[120]  A. MacFadyen,et al.  Magnetar-Driven Magnetic Tower as a Model for Gamma-Ray Bursts and Asymmetric Supernovae , 2006, astro-ph/0609047.

[121]  R. Haas,et al.  TIDAL DISRUPTIONS OF WHITE DWARFS FROM ULTRA-CLOSE ENCOUNTERS WITH INTERMEDIATE-MASS SPINNING BLACK HOLES , 2012, 1201.4389.

[122]  R. Blandford,et al.  Electromagnetic extraction of energy from Kerr black holes , 1977 .

[123]  Andrew Ulmer,et al.  Flares from the Tidal Disruption of Stars by Massive Black Holes , 1999 .

[124]  A. Beloborodov,et al.  RADIATIVE TRANSFER IN ULTRARELATIVISTIC OUTFLOWS , 2010, 1011.6005.

[125]  Melvyn B. Davies,et al.  Tidal disruptions by supermassive black holes - Hydrodynamic evolution of stars on a Schwarzschild background , 1993 .

[126]  David Merritt,et al.  REVISED RATES OF STELLAR DISRUPTION IN GALACTIC NUCLEI , 2004 .

[127]  I. Papadakis,et al.  Improved methods for power spectrum modelling of red noise , 1993 .

[128]  R. Narayan,et al.  Self-similar Accretion Flows with Convection , 1999, astro-ph/9912449.

[129]  T. Piran,et al.  Accretion Models of Gamma-Ray Bursts , 2001, astro-ph/0103360.

[130]  R. Daly Estimates of black hole spin properties of 55 sources , 2011, 1103.0940.

[131]  William H. Press,et al.  Rotating Black Holes: Locally Nonrotating Frames, Energy Extraction, and Scalar Synchrotron Radiation , 1972 .

[132]  Jean P. Brodie,et al.  Extragalactic Globular Clusters and Galaxy Formation , 2006 .

[133]  Charles R. Evans,et al.  The tidal disruption of a star by a massive black hole , 1989 .

[134]  P. Brown,et al.  The association of GRB 060218 with a supernova and the evolution of the shock wave , 2006, Nature.

[135]  Martin J. Rees,et al.  Peak Energy Clustering and Efficiency in Compact Objects , 2005 .

[136]  Kavli Institute for Particle Astrophysics,et al.  BLACK HOLE SPIN AND THE RADIO LOUD/QUIET DICHOTOMY OF ACTIVE GALACTIC NUCLEI , 2009, 0911.2228.

[137]  G. Hasinger,et al.  A Huge Drop in the X-Ray Luminosity of the Nonactive Galaxy RX J1242.6–1119A, and the First Postflare Spectrum: Testing the Tidal Disruption Scenario , 2004 .

[138]  J. R. Thorstensen,et al.  GRB 060218/SN 2006aj: A Gamma-Ray Burst and Prompt Supernova at z = 0.0335 , 2006, astro-ph/0603686.

[139]  T. Piran,et al.  Variability in GRBs - A Clue , 1997, astro-ph/9701002.

[140]  P. Jakobsson,et al.  THE HIGHLY ENERGETIC EXPANSION OF SN 2010bh ASSOCIATED WITH GRB 100316D , 2011, 1111.4527.

[141]  Harvard,et al.  Efficient Generation of Jets from Magnetically Arrested Accretion on a Rapidly Spinning Black Hole , 2011, 1108.0412.

[142]  Nozomu Tominaga,et al.  Models for the Type Ic Hypernova SN 2003lw associated with GRB 031203 , 2006, astro-ph/0603516.

[143]  S. B. Cenko,et al.  Relativistic ejecta from X-ray flash XRF 060218 and the rate of cosmic explosions , 2006, Nature.

[144]  C. Bianco,et al.  GRB 060218 and GRBs associated with supernovae Ib/c , 2007, 0706.3209.

[145]  Mohan Ganeshalingam,et al.  Nearby supernova rates from the Lick Observatory Supernova Search – III. The rate–size relation, and the rates as a function of galaxy Hubble type and colour , 2010, 1006.4613.

[146]  M. Eracleous,et al.  Luminous [O III] and [N II] from Tidally Disrupted Horizontal Branch Stars , 2012, 1205.3053.

[147]  D. Lynden-Bell,et al.  The Evolution of viscous discs and the origin of the nebular variables. , 1974 .

[148]  Nathaniel R. Butler,et al.  A Complete Catalog of Swift Gamma-Ray Burst Spectra and Durations: Demise of a Physical Origin for Pre-Swift High-Energy Correlations , 2007, 0706.1275.