Overview of inertial fusion research in the United States
暂无分享,去创建一个
L. J. Atherton | S. Skupsky | B. Yaakobi | B. G. Logan | P. W. McKenty | Edward I. Moses | Michael Edward Cuneo | John L. Porter | Robert L. McCrory | S. P. Obenschain | S. J. Loucks | V. N. Goncharov | D. R. Harding | T. C. Sangster | Abbas Nikroo | John D. Sethian | T. P. Bernat | B. A. Hammel | Cris W. Barnes | Maurice Keith Matzen | J. D. Lindl | R. D. Petrasso | D. D. Meyerhofer | C. Barnes | B. MacGowan | M. Cuneo | L. Atherton | A. Nikroo | J. Porter | D. Meyerhofer | R. Petrasso | M. Matzen | E. Moses | S. Obenschain | Carlos Segovia Fernández | V. Goncharov | D. Harding | R. Mccrory | P. McKenty | J. Sethian | S. Skupsky | B. Yaakobi | D. Wilson | J. Lindl | B. Hammel | J. Kilkenny | T. Bernat | S. Loucks | D. C. Wilson | Simon S. Yu | B. J. MacGowan | J. C. Fernández | Joe Kilkenny | T. Sangster | Simon S. Yu | Simon S. Yu | B. Logan
[1] John Edwards,et al. The effects of fill tubes on the hydrodynamics of ignition targets and prospects for ignition , 2005 .
[2] B. G. Logan,et al. Drift compression of an intense neutralized ion beam. , 2005, Physical review letters.
[3] Wayne R. Meier,et al. Fusion energy with lasers, direct drive targets, and dry wall chambers , 2003 .
[4] Denis G. Colombant,et al. Direct-drive laser fusion: status and prospects , 1998 .
[5] V N Goncharov,et al. Evolution of shell nonuniformities near peak compression of a spherical implosion. , 2001, Physical review letters.
[6] Gordon Andrew Chandler,et al. Compact single and nested tungsten-wire-array dynamics at 14–19MA and applications to inertial confinement fusiona) , 2006 .
[7] Neil Alexander,et al. Experimental Target Injection and Tracking System , 2003 .
[8] Andy J. Bayramian,et al. The mercury laser system – An average power, gas-cooled, Yb:S-FAP based system with frequency conversion and wavefront correction , 2005 .
[9] D. Bliss,et al. Demonstration of radiation pulse shaping with nested-tungsten-wire-array pinches for high-yield inertial confinement fusion. , 2005, Physical review letters.
[10] D. Phillion,et al. 25 ps neutron detector for measuring ICF‐target burn history , 1995 .
[11] J. R. Greig,et al. Measurement of the plasma width in a ring cusp , 1980 .
[12] P. Walsh,et al. Characterization of National Ignitition Facility cryogenic beryllium capsules using x-ray phase contrast imaging , 2004 .
[13] A. Raffray. Threats, design limits and design windows for laser IFE dry wall chambers , 2005 .
[14] Masashi Shimada,et al. ITER-FEAT operation , 2001 .
[15] T. P. Bernat,et al. Ignition target fabrication and fielding for the national ignition facility , 2005 .
[16] R. S. Craxton,et al. Three-Dimensional Characterization of Cryogenic Target Ice Layers Using Multiple Shadowgraph Views , 2006 .
[17] Marshall,et al. Diagnosis of laser-compressed shells based on absorption of core radiation. , 1991, Physical review. A, Atomic, molecular, and optical physics.
[18] J. Lindl,et al. Inertial Confinement Fusion: The Quest for Ignition and Energy Gain Using Indirect Drive , 1998 .
[19] R. B. Jacobs,et al. Beta energy driven uniform deuterium--tritium ice layer in reactor-size cryogenic inertial fusion targets , 1988 .
[20] R. G. Adams,et al. Pulsed-power-driven high energy density physics and inertial confinement fusion research , 2004 .
[21] P. B. Radha,et al. Direct-drive inertial confinement fusion research at the Laboratory for Laser Energetics: charting the path to thermonuclear ignition , 2005 .
[22] R. Town,et al. Analysis of a direct-drive ignition capsule designed for the National Ignition Facility , 2001 .
[23] E. Moses,et al. The National Ignition Facility , 2004 .
[24] D. Baca,et al. The High Current Transport Experiment for heavy-ion inertial fusion , 2003, Proceedings of the 2003 Particle Accelerator Conference.
[25] J. Lawson. SOME CRITERIA FOR A POWER PRODUCING THERMONUCLEAR REACTOR , 1957 .
[26] J. Moody,et al. Status of cryogenic layering for NIF ignition targets , 2005 .
[27] D. Colombant,et al. Increase in Rosseland mean opacity for inertial fusion hohlraum walls , 1998 .
[28] D. S. Bailey,et al. High yield inertial confinement fusion target design for a z-pinch-driven hohlraum , 1999 .
[29] H. Shiraga,et al. Nuclear fusion: Fast heating scalable to laser fusion ignition , 2002, Nature.
[30] T. C. Sangster,et al. Producing Cryogenic Deuterium Targets for Experiments on OMEGA , 2005 .
[31] W. Seka,et al. Direct-drive laser fusion: status and prospects , 1998 .
[32] Robert L. McCrory,et al. FEEDOUT AND RAYLEIGH-TAYLOR SEEDING INDUCED BY LONG WAVELENGTH PERTURBATIONS IN ACCELERATED PLANAR FOILS , 1998 .
[33] Samuel A. Letzring,et al. Initial performance results of the OMEGA laser system , 1997 .
[34] Epstein,et al. Effect of laser illumination nonuniformity on the analysis of time-resolved x-ray measurements in uv spherical transport experiments. , 1987, Physical review. A, General physics.
[35] B. G. Logan,et al. The US inertial confinement fusion (ICF) ignition programme and the inertial fusion energy (IFE) programme , 2003 .
[36] R. G. Adams,et al. Symmetric inertial confinement fusion capsule implosions in a high-yield-scale double-Z-pinch-driven hohlraum on Z , 2003 .
[37] Kamel Fezzaa,et al. Quantitative characterization of inertial confinement fusion capsules using phase contrast enhanced x-ray imaging , 2005 .
[38] A Melchior,et al. Streaked optical pyrometer system for laser-driven shock-wave experiments on OMEGA. , 2007, The Review of scientific instruments.
[39] S. Skupsky,et al. High-gain, direct-drive foam target designs for the national ignition facility , 2003 .
[40] N. Miyanaga,et al. Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition , 2001, Nature.
[41] Arthur Nobile,et al. A cost-effective target supply for inertial fusion energy , 2004 .
[42] T. H. Hinterman,et al. Forming cryogenic targets for direct-drive experimentsa) , 2006 .
[43] L. M. Elasky,et al. Direct-drive cryogenic target implosion performance on OMEGA , 2003 .
[44] S. Pollaine,et al. Characterizing spherical harmonic coefficients on an ICF capsule , 2004 .
[45] Michael D. Perry,et al. Ignition and high gain with ultrapowerful lasers , 1994 .
[46] R. Craxton. Polar Direct Drive---Proof-of-Principle Experiments on OMEGA , 2004 .
[47] Gordon Andrew Chandler,et al. Progress in symmetric ICF capsule implosions and wire-array z-pinch source physics for double-pinch-driven hohlraums , 2005 .
[48] Wayne R. Meier,et al. Overview of US heavy-ion fusion progress and plans , 2005 .
[49] D. Grote,et al. Compact multibeamlet high-current injector for heavy-ion fusion drivers , 2006 .
[50] G. Chandler,et al. Tungsten wire-array Z-pinch experiments at 200 TW and 2 MJ , 1998 .
[51] V. Goncharov. Theory of the Ablative Richtmyer-Meshkov Instability , 1999 .
[52] D. Schroen,et al. Development of Divinylbenzene Foam Shells for Use as Inertial Fusion Energy Reactor Targets , 2003 .
[53] Jake Bromage,et al. OMEGA EP : High-energy petawatt capability for the OMEGA laser facility , 2006 .
[54] M. Key,et al. Proton Fast Ignition , 2005 .
[55] J. D. Salmonson,et al. Update on Specifications for NIF Ignition Targets, and Their Rollup into an Error Budget , 2005 .
[56] O. Gotchev,et al. Test of thermal transport models through dynamic overpressure stabilization of ablation-front perturbation growth in laser-driven CH foils. , 2006, Physical review letters.
[57] William J. Hogan,et al. The National Ignition Facility , 2001 .
[58] John Giuliani,et al. Repetitively pulsed, high energy KrF lasers for inertial fusion energy , 2004 .
[59] L. M. Elasky,et al. Characterization of cryogenic direct-drive ICF targets during layering studies and just prior to shot time , 2006 .
[60] Barry E. Schwartz,et al. Spectrometry of charged particles from inertial-confinement-fusion plasmas , 2003 .
[61] J. Hoffer,et al. Radioactively induced sublimation in solid tritium. , 1988, Physical review letters.