Overview of inertial fusion research in the United States

The inertial confinement fusion (ICF) programme, the high-average-power lasers (HAPL) programme, and the heavy ion fusion (HIF) programme are making long-term investments to establish the scientific and technical basis for an economically and environmentally attractive fusion power source. In the near term, the National Ignition Campaign is expected to establish the scientific and technical basis for ignition and gain on the National Ignition Facility. The results of these experiments and the implications for target design will be incorporated into the long-term efforts to develop a viable power-plant concept including target production, chamber dynamics and driver.

[1]  John Edwards,et al.  The effects of fill tubes on the hydrodynamics of ignition targets and prospects for ignition , 2005 .

[2]  B. G. Logan,et al.  Drift compression of an intense neutralized ion beam. , 2005, Physical review letters.

[3]  Wayne R. Meier,et al.  Fusion energy with lasers, direct drive targets, and dry wall chambers , 2003 .

[4]  Denis G. Colombant,et al.  Direct-drive laser fusion: status and prospects , 1998 .

[5]  V N Goncharov,et al.  Evolution of shell nonuniformities near peak compression of a spherical implosion. , 2001, Physical review letters.

[6]  Gordon Andrew Chandler,et al.  Compact single and nested tungsten-wire-array dynamics at 14–19MA and applications to inertial confinement fusiona) , 2006 .

[7]  Neil Alexander,et al.  Experimental Target Injection and Tracking System , 2003 .

[8]  Andy J. Bayramian,et al.  The mercury laser system – An average power, gas-cooled, Yb:S-FAP based system with frequency conversion and wavefront correction , 2005 .

[9]  D. Bliss,et al.  Demonstration of radiation pulse shaping with nested-tungsten-wire-array pinches for high-yield inertial confinement fusion. , 2005, Physical review letters.

[10]  D. Phillion,et al.  25 ps neutron detector for measuring ICF‐target burn history , 1995 .

[11]  J. R. Greig,et al.  Measurement of the plasma width in a ring cusp , 1980 .

[12]  P. Walsh,et al.  Characterization of National Ignitition Facility cryogenic beryllium capsules using x-ray phase contrast imaging , 2004 .

[13]  A. Raffray Threats, design limits and design windows for laser IFE dry wall chambers , 2005 .

[14]  Masashi Shimada,et al.  ITER-FEAT operation , 2001 .

[15]  T. P. Bernat,et al.  Ignition target fabrication and fielding for the national ignition facility , 2005 .

[16]  R. S. Craxton,et al.  Three-Dimensional Characterization of Cryogenic Target Ice Layers Using Multiple Shadowgraph Views , 2006 .

[17]  Marshall,et al.  Diagnosis of laser-compressed shells based on absorption of core radiation. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[18]  J. Lindl,et al.  Inertial Confinement Fusion: The Quest for Ignition and Energy Gain Using Indirect Drive , 1998 .

[19]  R. B. Jacobs,et al.  Beta energy driven uniform deuterium--tritium ice layer in reactor-size cryogenic inertial fusion targets , 1988 .

[20]  R. G. Adams,et al.  Pulsed-power-driven high energy density physics and inertial confinement fusion research , 2004 .

[21]  P. B. Radha,et al.  Direct-drive inertial confinement fusion research at the Laboratory for Laser Energetics: charting the path to thermonuclear ignition , 2005 .

[22]  R. Town,et al.  Analysis of a direct-drive ignition capsule designed for the National Ignition Facility , 2001 .

[23]  E. Moses,et al.  The National Ignition Facility , 2004 .

[24]  D. Baca,et al.  The High Current Transport Experiment for heavy-ion inertial fusion , 2003, Proceedings of the 2003 Particle Accelerator Conference.

[25]  J. Lawson SOME CRITERIA FOR A POWER PRODUCING THERMONUCLEAR REACTOR , 1957 .

[26]  J. Moody,et al.  Status of cryogenic layering for NIF ignition targets , 2005 .

[27]  D. Colombant,et al.  Increase in Rosseland mean opacity for inertial fusion hohlraum walls , 1998 .

[28]  D. S. Bailey,et al.  High yield inertial confinement fusion target design for a z-pinch-driven hohlraum , 1999 .

[29]  H. Shiraga,et al.  Nuclear fusion: Fast heating scalable to laser fusion ignition , 2002, Nature.

[30]  T. C. Sangster,et al.  Producing Cryogenic Deuterium Targets for Experiments on OMEGA , 2005 .

[31]  W. Seka,et al.  Direct-drive laser fusion: status and prospects , 1998 .

[32]  Robert L. McCrory,et al.  FEEDOUT AND RAYLEIGH-TAYLOR SEEDING INDUCED BY LONG WAVELENGTH PERTURBATIONS IN ACCELERATED PLANAR FOILS , 1998 .

[33]  Samuel A. Letzring,et al.  Initial performance results of the OMEGA laser system , 1997 .

[34]  Epstein,et al.  Effect of laser illumination nonuniformity on the analysis of time-resolved x-ray measurements in uv spherical transport experiments. , 1987, Physical review. A, General physics.

[35]  B. G. Logan,et al.  The US inertial confinement fusion (ICF) ignition programme and the inertial fusion energy (IFE) programme , 2003 .

[36]  R. G. Adams,et al.  Symmetric inertial confinement fusion capsule implosions in a high-yield-scale double-Z-pinch-driven hohlraum on Z , 2003 .

[37]  Kamel Fezzaa,et al.  Quantitative characterization of inertial confinement fusion capsules using phase contrast enhanced x-ray imaging , 2005 .

[38]  A Melchior,et al.  Streaked optical pyrometer system for laser-driven shock-wave experiments on OMEGA. , 2007, The Review of scientific instruments.

[39]  S. Skupsky,et al.  High-gain, direct-drive foam target designs for the national ignition facility , 2003 .

[40]  N. Miyanaga,et al.  Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition , 2001, Nature.

[41]  Arthur Nobile,et al.  A cost-effective target supply for inertial fusion energy , 2004 .

[42]  T. H. Hinterman,et al.  Forming cryogenic targets for direct-drive experimentsa) , 2006 .

[43]  L. M. Elasky,et al.  Direct-drive cryogenic target implosion performance on OMEGA , 2003 .

[44]  S. Pollaine,et al.  Characterizing spherical harmonic coefficients on an ICF capsule , 2004 .

[45]  Michael D. Perry,et al.  Ignition and high gain with ultrapowerful lasers , 1994 .

[46]  R. Craxton Polar Direct Drive---Proof-of-Principle Experiments on OMEGA , 2004 .

[47]  Gordon Andrew Chandler,et al.  Progress in symmetric ICF capsule implosions and wire-array z-pinch source physics for double-pinch-driven hohlraums , 2005 .

[48]  Wayne R. Meier,et al.  Overview of US heavy-ion fusion progress and plans , 2005 .

[49]  D. Grote,et al.  Compact multibeamlet high-current injector for heavy-ion fusion drivers , 2006 .

[50]  G. Chandler,et al.  Tungsten wire-array Z-pinch experiments at 200 TW and 2 MJ , 1998 .

[51]  V. Goncharov Theory of the Ablative Richtmyer-Meshkov Instability , 1999 .

[52]  D. Schroen,et al.  Development of Divinylbenzene Foam Shells for Use as Inertial Fusion Energy Reactor Targets , 2003 .

[53]  Jake Bromage,et al.  OMEGA EP : High-energy petawatt capability for the OMEGA laser facility , 2006 .

[54]  M. Key,et al.  Proton Fast Ignition , 2005 .

[55]  J. D. Salmonson,et al.  Update on Specifications for NIF Ignition Targets, and Their Rollup into an Error Budget , 2005 .

[56]  O. Gotchev,et al.  Test of thermal transport models through dynamic overpressure stabilization of ablation-front perturbation growth in laser-driven CH foils. , 2006, Physical review letters.

[57]  William J. Hogan,et al.  The National Ignition Facility , 2001 .

[58]  John Giuliani,et al.  Repetitively pulsed, high energy KrF lasers for inertial fusion energy , 2004 .

[59]  L. M. Elasky,et al.  Characterization of cryogenic direct-drive ICF targets during layering studies and just prior to shot time , 2006 .

[60]  Barry E. Schwartz,et al.  Spectrometry of charged particles from inertial-confinement-fusion plasmas , 2003 .

[61]  J. Hoffer,et al.  Radioactively induced sublimation in solid tritium. , 1988, Physical review letters.