Error analysis for tropospheric NO2 retrieval from space

[1] Retrieval uncertainty estimates for vertical tropospheric NO2 columns based on theoretical error source discussions combined with actual Global Ozone Monitoring Experiment (GOME) observations are presented. Contributions to the total retrieval uncertainty are divided into three categories: (1) errors caused by measurement noise and spectral fitting, affecting the slant column density, (2) errors related to the separation of stratospheric and tropospheric NO2 affecting the estimate of the stratospheric slant column, and (3) errors due to uncertainty in model parameters such as clouds, surface albedo, and a priori profile shape, affecting the tropospheric air mass factor. Furthermore, it is shown that a correction for the effective temperature of the trace gas is essential and that a correction for the presence of aerosols needs to be accompanied by aerosol corrections to the cloud retrieval. A discussion of the error components and total retrieval uncertainty is given for March 1997. Tropospheric NO2 columns can be retrieved with a precision of 35–60% over regions with a large contribution of the troposphere to the total column. This error estimate demonstrates the need for highly accurate albedo maps, cloud retrieval schemes, and realistic a priori NO2 profile shapes.

[1]  Johannes Orphal,et al.  ATMOSPHERIC REMOTE-SENSING REFERENCE DATA FROM GOME: PART 1. TEMPERATURE-DEPENDENT ABSORPTION CROSS-SECTIONS OF NO2 IN THE 231–794 nm RANGE , 1998 .

[2]  Kelly Chance,et al.  Cloud retrieval algorithm for the European Space Agency's Global Ozone Monitoring Experiment , 1998, Remote Sensing.

[3]  Sander Houweling,et al.  Trends and inter-annual variability of methane emissions derived from 1979-1993 global CTM simulations , 2002 .

[4]  Thomas P. Kurosu,et al.  Satellite observations of formaldehyde over North America from GOME , 2000 .

[5]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[6]  James F. Gleason,et al.  An improved retrieval of tropospheric nitrogen dioxide from GOME , 2002 .

[7]  François Dulac,et al.  Wet deposition in a global size-dependent aerosol transport model: 1. Comparison of a 1 year 210Pb simulation with ground measurements , 1998 .

[8]  C. Guimbaud,et al.  Uptake of HNO 3 to deliquescent sea-salt particles: a study using the short-lived radioactive isotope tracer 13 N , 2002 .

[9]  J. Hovenier,et al.  The adding method for multiple scattering calculations of polarized light , 1987 .

[10]  J. Lelieveld,et al.  A 1°×1° resolution data set of historical anthropogenic trace gas emissions for the period 1890–1990 , 2001 .

[11]  T. Eck,et al.  Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations , 2002 .

[12]  P. V. Velthoven,et al.  Improvement and evaluation of the parameterisation of nitrogen oxide production by lightning , 2001 .

[13]  G. Russell,et al.  A New Finite-Differencing Scheme for the Tracer Transport Equation , 1981 .

[14]  Didier Tanré,et al.  Analytical expressions for radiative properties of planar rayleigh scattering media, including polarization contributions , 1992 .

[15]  J. Louis A parametric model of vertical eddy fluxes in the atmosphere , 1979 .

[16]  J. Burrows,et al.  Quantification of Tropospheric Measurements from Nadir Viewing UV/Visible Instruments , 2004 .

[17]  Henk Eskes,et al.  Averaging kernels for DOAS total-column satellite retrievals , 2003 .

[18]  Bernd Jähne,et al.  Quantitative analysis of NO x emissions from Global Ozone Monitoring Experiment satellite image sequences , 2001 .

[19]  P. Crutzen,et al.  A three-dimensional model of the global ammonia cycle , 1994 .

[20]  Robert J. D. Spurr,et al.  Air-mass factor formulation for spectroscopic measurements from satellites: application to formaldeh , 2001 .

[21]  Hennie Kelder,et al.  Variability in tropical tropospheric ozone: Analysis with Global Ozone Monitoring Experiment observations and a global model , 2003 .

[22]  B. Knudsen On the accuracy of analysed low temperatures in the stratosphere , 2003 .

[23]  Michael Eisinger,et al.  Refinement of a Database of Spectral Surface Reflectivity in the Range 335-772 nm Derived from 5.5 Years of GOME Observations , 2003 .

[24]  E. Dlugokencky,et al.  Atmospheric chemistry and greenhouse gases , 2001 .

[25]  Ulrich Platt,et al.  Differential optical absorption spectroscopy (DOAS) , 1994 .

[26]  T. Wagner,et al.  Satellite mapping of enhanced BrO concentrations in the troposphere , 1998, Nature.

[27]  Ann Carine Vandaele,et al.  Measurements of the NO2 absorption cross-section from 42 000 cm−1 to 10 000 cm−1 (238–1000 nm) at 220 K and 294 K , 1998 .

[28]  J. Burrows,et al.  Tropospheric sulfur dioxide observed by the ERS‐2 GOME instrument , 1998 .

[29]  John P. Burrows,et al.  TROPOSPHERIC NO2 FROM GOME MEASUREMENTS , 2002 .

[30]  J. Hovenier,et al.  The polarized internal radiation field of a planetary atmosphere , 1989 .

[31]  Thomas P. Kurosu,et al.  Global inventory of nitrogen oxide emissions constrained by space‐based observations of NO2 columns , 2003 .

[32]  J. Hovenier,et al.  A fast method for retrieval of cloud parameters using oxygen A band measurements from the Global Ozone Monitoring Experiment , 2001 .

[33]  J. Burrows,et al.  Tropospheric NO 2 columns: a comparison between model and retrieved data from GOME measurements , 2001 .

[34]  Jay R. Herman,et al.  Earth surface reflectivity climatology at 340–380 nm from TOMS data , 1997 .

[35]  Michael Eisinger,et al.  The Global Ozone Monitoring Experiment (GOME): Mission Concept and First Scientific Results , 1999 .

[36]  Klaus Pfeilsticker,et al.  Global tropospheric NO2 column distributions' Comparing three-dimensional model calculations with GOME , 2001 .