Maximum degree in minor-closed classes of graphs

Given a class of graphs G closed under taking minors, we study the maximum degree Δ n of random graphs from G with n vertices. We prove several lower and upper bounds that hold with high probability. Among other results, we find classes of graphs providing orders of magnitude for Δ n not observed before, such us log n / log log log n and log n / log log log log n .

[1]  Marc Noy,et al.  Extremal Parameters in Sub-Critical Graph Classes , 2013, ANALCO.

[2]  Bruce A. Reed,et al.  On the Maximum Degree of a Random Planar Graph , 2008, Comb. Probab. Comput..

[3]  William M. Y. Goh,et al.  The Maximum Degree in a Random Tree and Related Problems , 1994, Random Struct. Algorithms.

[4]  Colin McDiarmid,et al.  Random Graphs from a Minor-Closed Class , 2009, Combinatorics, Probability and Computing.

[5]  Marc Noy,et al.  Degree distribution in random planar graphs , 2009, J. Comb. Theory, Ser. A.

[6]  Svante Janson,et al.  Simply generated trees, conditioned Galton–Watson trees, random allocations and condensation , 2011, 1112.0510.

[7]  Marc Noy,et al.  The maximum degree of planar graphs I. Series-parallel graphs , 2010, 1008.5361.

[8]  Marc Noy,et al.  Graph classes with given 3‐connected components: Asymptotic enumeration and random graphs , 2009, Random Struct. Algorithms.

[9]  Marc Noy,et al.  The maximum degree of random planar graphs , 2012, SODA.

[10]  J. Moon,et al.  On the maximum degree in a random tree. , 1968 .

[11]  Colin McDiarmid,et al.  Random Graphs with Few Disjoint Cycles , 2011, Comb. Probab. Comput..

[12]  Konstantinos Panagiotou,et al.  The Degree Sequence of Random Graphs from Subcritical Classes† , 2009, Combinatorics, Probability and Computing.

[13]  Nicholas C. Wormald,et al.  The Distribution of the Maximum Vertex Degree in Random Planar Maps , 2000, J. Comb. Theory A.

[14]  Marc Noy,et al.  The Maximum Degree of Series-Parallel Graphs , 2011, Combinatorics, Probability and Computing.