Quantifying concrete adiabatic temperature rise based on temperature-dependent isothermal calorimetry; modeling and validation

[1]  Arun C. Emmanuel,et al.  Influence of curing temperature on hydration and microstructural development of ordinary Portland cement , 2022, Construction and Building Materials.

[2]  Lijun Sun,et al.  Cement hydration kinetics study in the temperature range from 15 °C to 95 °C , 2021 .

[3]  J. P. Singh,et al.  Measuring and modeling cement hydration kinetics at variable temperature conditions , 2020 .

[4]  P. Yan,et al.  Effect of alkali content in cement on its hydration kinetics and mechanical properties , 2019 .

[5]  P. Lura,et al.  Properties of early-age concrete relevant to cracking in massive concrete , 2019, Cement and Concrete Research.

[6]  A. Sedaghat,et al.  Methodology Comparison for Concrete Adiabatic Temperature Rise , 2019, ACI Materials Journal.

[7]  Jiaping Liu,et al.  Early-age hydration and mechanical properties of high volume slag and fly ash concrete at different curing temperatures , 2017 .

[8]  Eric Gross,et al.  Development of a Mass Concrete Specification for Use in ALDOT Bridge Construction , 2017 .

[9]  Dongyeop Han,et al.  Influence of high mixing intensity on rheology, hydration, and microstructure of fresh state cement paste , 2016 .

[10]  B. Engquist,et al.  A mathematical model to predict adiabatic temperatures from isothermal heat evolutions with validation for cementitious materials , 2015 .

[11]  Jeffrey J. Thomas,et al.  The Instantaneous Apparent Activation Energy of Cement Hydration Measured Using a Novel Calorimetry‐Based Method , 2012 .

[12]  Han-seung Lee,et al.  Heat of hydration models of cementitious materials , 2012 .

[13]  K. Folliard,et al.  Modeling hydration of cementitious systems , 2012 .

[14]  K. Folliard,et al.  New Model for Estimating Apparent Activation Energy of Cementitious Systems , 2011 .

[15]  J. Dolado,et al.  Recent advances in modeling for cementitious materials , 2011 .

[16]  Jiong Hu,et al.  Modeling hydration properties and temperature developments of early-age concrete pavement using calorimetry tests , 2011 .

[17]  Christian Meyer,et al.  Hydration kinetics modeling of Portland cement considering the effects of curing temperature and applied pressure , 2009 .

[18]  John T Harvey,et al.  New perspectives on maturity method and approach for high performance concrete applications , 2008 .

[19]  S. Wild,et al.  Heat of hydration of Portland Cement-Metakaolin-Fly ash (PC-MK-PFA) blends , 2008 .

[20]  K. Folliard,et al.  Hydration Study of Cementitious Materials using Semi-Adiabatic Calorimetry , 2007, "SP-241: Concrete Heat Development: Monitoring, Prediction & Management".

[21]  Kyle A. Riding,et al.  Methods for Calculating Activation Energy for Portland Cement , 2007 .

[22]  G. D. Schutter,et al.  Cement Hydration In The Presence Of High Filler Contents , 2005 .

[23]  A. Chini,et al.  Effect of elevated curing temperatures on the strength and durability of concrete , 2005 .

[24]  M. Collepardi,et al.  A state-of-the-art review on delayed ettringite attack on concrete , 2003 .

[25]  B. Duthoit,et al.  Conception of an isothermal calorimeter for concrete— Determination of the apparent activation energy , 2002 .

[26]  A. Schindler,et al.  Concrete hydration, temperature development, and setting at early-ages , 2002 .

[27]  Martha G. VanGeem,et al.  Controlling Temperatures in Mass Concrete , 2002 .

[28]  Adam Neville,et al.  Consideration of durability of concrete structures: Past, present, and future , 2001 .

[29]  Venčeslav Kaučič,et al.  The effects of limestone addition, clinker type and fineness on properties of Portland cement , 2001 .

[30]  Hamlin M. Jennings,et al.  The influence of mixing on the rheology of fresh cement paste , 1999 .

[31]  John H. Sharp,et al.  Effect of temperature on the hydration of the main clinker phases in portland cements: part ii, blended cements , 1998 .

[32]  Luc Taerwe,et al.  Degree of hydration-based description of mechanical properties of early age concrete , 1996 .

[33]  R. Detwiler,et al.  THE USE OF LIMESTONE IN PORTLAND CEMENT: A STATE-OF-THE-ART REVIEW , 1996 .

[34]  M Suzuki,et al.  Properties of Granulated Blast-Furnace Slag Cement Concrete , 1992, "SP-132: Fly Ash, Silica Fume, Slag, and Natural Pozzolans and Natural Pozzolans in Concrete - Proceedings Fourth Interna".

[35]  Chao-Lung Hwang,et al.  The effects of blast-furnace slag and fly ash on the hydration of portland cement , 1991 .

[36]  C. D. Pomeroy Properties of fresh concrete , 1991 .

[37]  Della M. Roy,et al.  THE RETARDING EFFECTS OF FLY ASH UPON THE HYDRATION OF CEMENT PASTES: THE FIRST 24 HOURS , 1985 .

[38]  Nicholas J. Carino,et al.  The Maturity Method: Theory and Application , 1984 .

[39]  K. Van Breugel,et al.  Artificial cooling of hardening concrete , 1980 .

[40]  Jan Byfors,et al.  Plain concrete at early ages , 1980 .

[41]  P. F. Hansen,et al.  MATURITY COMPUTER FOR CONTROLLED CURING AND HARDENING OF CONCRETE , 1977 .

[42]  R. Mills,et al.  FACTORS INFLUENCING CESSATION OF HYDRATION IN WATER CURED CEMENT PASTES , 1966 .

[43]  R. Bogue The Chemistry of Portland Cement. Second Edition , 1955 .

[44]  W. Lerch,et al.  Long-Time Study of Cement Performance in Concrete , 1948 .

[45]  R. Bogue The chemistry of Portland cement , 1947 .