Global Behavior Analysis of a Class of Uncertain Nonlinear Systems

This paper is concerned with the problem of global behavior analysis for a class of nonlinear systems with parameter uncertainties in the feedforward path and a periodic nonlinear function in the feedback path. Based on the frequency domain methods, sufficient criteria of robust global behavior for such systems are derived. An example illustrating the numerical implementation of the main results is presented

[1]  Lin Huang,et al.  Nonexistence of Periodic Solutions in a Class of Dynamical Systems with Cylindrical Phase Space , 2005, Int. J. Bifurc. Chaos.

[2]  T. Başar Absolute Stability of Nonlinear Systems of Automatic Control , 2001 .

[3]  Long Wang,et al.  Composite Interval Control Systems: Some Strong Kharitonov-Like Properties , 2000, Reliab. Comput..

[4]  Gennady A. Leonov,et al.  Analysis of frequency-of-oscillations-controlled systems , 1997, 1997 1st International Conference, Control of Oscillations and Chaos Proceedings (Cat. No.97TH8329).

[5]  G. Leonov,et al.  Frequency-Domain Methods for Nonlinear Analysis: Theory and Applications , 1996 .

[6]  Gennady A. Leonov,et al.  Stability and Oscillations of Solutions of Integro-Differential Equations of Pendulum—like Systems , 1996 .

[7]  S. Dasgupta,et al.  Minimality, stabilizability, and strong stabilizability of uncertain plants , 1993, IEEE Trans. Autom. Control..

[8]  L. Chua,et al.  A qualitative analysis of the behavior of dynamic nonlinear networks: Stability of autonomous networks , 1976 .

[9]  G. Leonov A class of dynamical systems with cylindrical phase spaces , 1976 .

[10]  C. Desoer Frequency domain criteria for absolute stability , 1975, Proceedings of the IEEE.

[11]  V. Belykh,et al.  Qualitative investigation of a system of three differential equations in the theory of phase synchronization PMM vol. 39, n≗ 4, 1975, pp. 642-649 , 1975 .

[12]  Gennady A. Leonov,et al.  On the boundedness of the trajectories of phase systems , 1974 .

[13]  Andrew J. Viterbi,et al.  Principles of coherent communication , 1966 .

[14]  Austin Blaquière,et al.  Nonlinear System Analysis , 1966 .

[15]  W. Hayes,et al.  On the equation for a damped pendulum under constant torque , 1953 .

[16]  G. Seifert On the existence of certain solutions of a nonlinear differential equation , 1952 .