Analytics for the Internet of Things

The Internet of Things (IoT) envisions a world-wide, interconnected network of smart physical entities. These physical entities generate a large amount of data in operation, and as the IoT gains momentum in terms of deployment, the combined scale of those data seems destined to continue to grow. Increasingly, applications for the IoT involve analytics. Data analytics is the process of deriving knowledge from data, generating value like actionable insights from them. This article reviews work in the IoT and big data analytics from the perspective of their utility in creating efficient, effective, and innovative applications and services for a wide spectrum of domains. We review the broad vision for the IoT as it is shaped in various communities, examine the application of data analytics across IoT domains, provide a categorisation of analytic approaches, and propose a layered taxonomy from IoT data to analytics. This taxonomy provides us with insights on the appropriateness of analytical techniques, which in turn shapes a survey of enabling technology and infrastructure for IoT analytics. Finally, we look at some tradeoffs for analytics in the IoT that can shape future research.

[1]  Roy van Beest Project Intelligence: is Data Analytics the new path to value? , 2016 .

[2]  Imrich Chlamtac,et al.  Internet of things: Vision, applications and research challenges , 2012, Ad Hoc Networks.

[3]  Marilyn Wolf The Physics of Event-Driven IoT Systems , 2017, IEEE Design & Test.

[4]  Peter Friess,et al.  Internet of Things Applications - From Research and Innovation to Market Deployment , 2014 .

[5]  Muhammad Intizar Ali,et al.  Agri-IoT: A semantic framework for Internet of Things-enabled smart farming applications , 2016, 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT).

[6]  Partha Pratim Ray Towards an Internet of Things based architectural framework for defence , 2015, 2015 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT).

[7]  Samuel Madden,et al.  From Databases to Big Data , 2012, IEEE Internet Comput..

[8]  Angelo Chianese,et al.  An Associative Engines Based Approach Supporting Collaborative Analytics in the Internet of Cultural Things , 2015, 2015 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC).

[9]  Siobhán Clarke,et al.  MDDSVsim: an integrated traffic simulation platform for autonomous vehicle research , 2012 .

[10]  Sneha A. Dalvi,et al.  Internet of Things for Smart Cities , 2017 .

[11]  T. Davenport Competing on analytics. , 2006, Harvard business review.

[12]  Aparna S. Varde,et al.  Cloud Based Predictive Analytics: Text Classification, Recommender Systems and Decision Support , 2013, 2013 IEEE 13th International Conference on Data Mining Workshops.

[13]  Eui-nam Huh,et al.  Fog Computing and Smart Gateway Based Communication for Cloud of Things , 2014, 2014 International Conference on Future Internet of Things and Cloud.

[14]  Arkady B. Zaslavsky,et al.  Context Aware Computing for The Internet of Things: A Survey , 2013, IEEE Communications Surveys & Tutorials.

[15]  Gary Court,et al.  JSON Schema: core definitions and terminology , 2013 .

[16]  GhemawatSanjay,et al.  The Google file system , 2003 .

[17]  M. Shamim Hossain,et al.  Cloud-assisted Industrial Internet of Things (IIoT) - Enabled framework for health monitoring , 2016, Comput. Networks.

[18]  Wu He,et al.  Internet of Things in Industries: A Survey , 2014, IEEE Transactions on Industrial Informatics.

[19]  Xiangfeng Luo,et al.  Building the Multi-Modal Storytelling of Urban Emergency Events Based on Crowdsensing of Social Media Analytics , 2016, Mobile Networks and Applications.

[20]  P. A. Blight The Analysis of Time Series: An Introduction , 1991 .

[21]  Jr. Joe F. Hair Knowledge creation in marketing: the role of predictive analytics , 2007 .

[22]  P. Nijkamp,et al.  Smart Cities in Europe , 2011 .

[23]  Bogdan Franczyk,et al.  Applying big data and linked data concepts in supply chains management , 2013, 2013 Federated Conference on Computer Science and Information Systems.

[24]  Smruti R. Sarangi,et al.  Internet of Things: Architectures, Protocols, and Applications , 2017, J. Electr. Comput. Eng..

[25]  Peter Friess,et al.  Internet of Things: Converging Technologies for Smart Environments and Integrated Ecosystems , 2013 .

[26]  Anand Kulkarni,et al.  Scalable real time data management for smart grid , 2011, Middleware '11.

[27]  Shu-Hsien Liao,et al.  Data mining techniques and applications - A decade review from 2000 to 2011 , 2012, Expert Syst. Appl..

[28]  Burton H. Bloom,et al.  Space/time trade-offs in hash coding with allowable errors , 1970, CACM.

[29]  Luciano Bononi,et al.  Park Here! a smart parking system based on smartphones' embedded sensors and short range Communication Technologies , 2015, 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT).

[30]  Gerd Kortuem,et al.  Smart objects as building blocks for the Internet of things , 2010, IEEE Internet Computing.

[31]  Muhammad Saleem,et al.  A fine-grained evaluation of SPARQL endpoint federation systems , 2016, Semantic Web.

[32]  Gaetano Marrocco,et al.  RFID Technology for IoT-Based Personal Healthcare in Smart Spaces , 2014, IEEE Internet of Things Journal.

[33]  John A. Stankovic,et al.  Research Directions for the Internet of Things , 2014, IEEE Internet of Things Journal.

[34]  Yuan Yu,et al.  Dryad: distributed data-parallel programs from sequential building blocks , 2007, EuroSys '07.

[35]  Sunil Kumar Vuppala,et al.  PLEMS: Plug Load Energy Management Solution for Enterprises , 2013, 2013 IEEE 27th International Conference on Advanced Information Networking and Applications (AINA).

[36]  G. Antes,et al.  Five Steps to Conducting a Systematic Review , 2003, Journal of the Royal Society of Medicine.

[37]  Javad Rezazadeh,et al.  Middleware Technologies for Cloud of Things - a survey , 2017, Digit. Commun. Networks.

[38]  Steffen Staab,et al.  SPLENDID: SPARQL Endpoint Federation Exploiting VOID Descriptions , 2011, COLD.

[39]  Sanjay Ghemawat,et al.  MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.

[40]  Roman Y. Shtykh,et al.  Distributed Data Stream Processing with Onix , 2014, 2014 IEEE Fourth International Conference on Big Data and Cloud Computing.

[41]  Andrew Newton,et al.  A Language for Rules Describing JSON Content , 2017 .

[42]  Kyoungho An,et al.  Reactive stream processing for data-centric publish/subscribe , 2015, DEBS.

[43]  Charu C. Aggarwal,et al.  Mining Text Data , 2012 .

[44]  Christine Julien,et al.  Grapevine: Efficient situational awareness in pervasive computing environments , 2012, 2012 IEEE International Conference on Pervasive Computing and Communications Workshops.

[45]  Katharina Morik,et al.  Predictive Trip Planning - Smart Routing in Smart Cities , 2014, EDBT/ICDT Workshops.

[46]  Sofia Tsekeridou,et al.  The Safety Transformation in the Future Internet Domain , 2012, Future Internet Assembly.

[47]  Heidrun Schumann,et al.  Visual Methods for Analyzing Time-Oriented Data , 2008, IEEE Transactions on Visualization and Computer Graphics.

[48]  Siobhán Clarke,et al.  Middleware for Internet of Things: A Survey , 2016, IEEE Internet of Things Journal.

[49]  Paul J. Leach,et al.  Simple Service Discovery Protocol/1.0 , 1999 .

[50]  Arijit Mukherjee,et al.  ANGELS for distributed analytics in IoT , 2014, 2014 IEEE World Forum on Internet of Things (WF-IoT).

[51]  Victor Chang,et al.  A review and future direction of agile, business intelligence, analytics and data science , 2016, Int. J. Inf. Manag..

[52]  David S. Ebert,et al.  A Mobile Visual Analytics Approach for Law Enforcement Situation Awareness , 2014, 2014 IEEE Pacific Visualization Symposium.

[53]  Daniel A. Keim,et al.  Visual Analytics: Definition, Process, and Challenges , 2008, Information Visualization.

[54]  Marco Zennaro,et al.  On the Design of Smart Parking Networks in the Smart Cities: An Optimal Sensor Placement Model , 2015, Sensors.

[55]  Daniel A. Keim,et al.  Mastering the Information Age - Solving Problems with Visual Analytics , 2010 .

[56]  Paramvir Bahl,et al.  The Case for VM-Based Cloudlets in Mobile Computing , 2009, IEEE Pervasive Computing.

[57]  Marshall Copeland,et al.  Microsoft Azure , 2015, Apress.

[58]  J.G.A.J. van der Vorst,et al.  Virtualisation of floricultural supply chains , 2013 .

[59]  Jacques Bughin,et al.  The internet of things: mapping the value beyond the hype , 2015 .

[60]  Sungyong Lee,et al.  The Mining Minds digital health and wellness framework , 2016, Biomedical engineering online.

[61]  Daniel A. Keim,et al.  Visual analytics for the big data era — A comparative review of state-of-the-art commercial systems , 2012, 2012 IEEE Conference on Visual Analytics Science and Technology (VAST).

[62]  Sangtae Ha,et al.  Clarifying Fog Computing and Networking: 10 Questions and Answers , 2017, IEEE Communications Magazine.

[63]  Tim Berners-Lee,et al.  Linked Data - The Story So Far , 2009, Int. J. Semantic Web Inf. Syst..

[64]  Jay H. Bernstein,et al.  The Data-Information-Knowledge-Wisdom Hierarchy and its Antithesis , 2011 .

[65]  Dominique Genoud,et al.  Big data for smart cities with KNIME a real experience in the SmartSantander testbed , 2015, Softw. Pract. Exp..

[66]  Michael Stonebraker,et al.  H-store: a high-performance, distributed main memory transaction processing system , 2008, Proc. VLDB Endow..

[67]  S. Dutta,et al.  The Global Information Technology Report , 2003 .

[68]  Frank P. Coyle Review of 'The power of events: An introduction to complex event processing in distributed enterprise systems,' by David Luckham, Addison Wesley Professional, May 2002 , 2003, UBIQ.

[69]  Padhraic Smyth,et al.  From Data Mining to Knowledge Discovery in Databases , 1996, AI Mag..

[70]  Joseph K. Bradley,et al.  Spark SQL: Relational Data Processing in Spark , 2015, SIGMOD Conference.

[71]  Ian T. Foster,et al.  Making a case for distributed file systems at Exascale , 2011, LSAP '11.

[72]  David Luckham,et al.  The power of events - an introduction to complex event processing in distributed enterprise systems , 2002, RuleML.

[73]  Antonio Puliafito,et al.  AllJoyn Lambda: An architecture for the management of smart environments in IoT , 2014, 2014 International Conference on Smart Computing Workshops.

[74]  Nur Aini Rakhmawati,et al.  On the Impact of Data Distribution in Federated SPARQL Queries , 2012, 2012 IEEE Sixth International Conference on Semantic Computing.

[75]  Snigdhansu Chatterjee,et al.  Fast algorithm for computing weighted projection quantiles and data depth for high-dimensional large data clouds , 2014, 2014 IEEE International Conference on Big Data (Big Data).

[76]  Goetz Graefe,et al.  Volcano - An Extensible and Parallel Query Evaluation System , 1994, IEEE Trans. Knowl. Data Eng..

[77]  Zahid Anwar,et al.  Data mining techniques and applications — A decade review , 2017, 2017 23rd International Conference on Automation and Computing (ICAC).

[78]  Katja Hose,et al.  FedX: Optimization Techniques for Federated Query Processing on Linked Data , 2011, SEMWEB.

[79]  Septimiu Nechifor,et al.  Predictive analytics based on CEP for logistic of sensitive goods , 2014, 2014 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM).

[80]  Young-Koo Lee,et al.  Comprehensive Context Recognizer Based on Multimodal Sensors in a Smartphone , 2012, Sensors.

[81]  Milan Milenkovic A Case for Interoperable IoT Sensor Data and Meta-data Formats , 2015, Ubiquity.

[82]  Graeme G. Shanks,et al.  Business Analytics and Competitive Advantage: A Review and a Research Agenda , 2010, DSS.

[83]  Debora Viana Thompson,et al.  Defeating feature fatigue. , 2006, Harvard business review.

[84]  Min Chen,et al.  Smart Clothing: Connecting Human with Clouds and Big Data for Sustainable Health Monitoring , 2016, Mobile Networks and Applications.

[85]  Thomas Liebig,et al.  Heterogeneous stream processing for disaster detection and alarming , 2014, 2014 IEEE International Conference on Big Data (Big Data).

[86]  Lin Ma,et al.  Self-Driving Database Management Systems , 2017, CIDR.

[87]  Ulf Leser,et al.  Querying Distributed RDF Data Sources with SPARQL , 2008, ESWC.

[88]  Carlos Guestrin,et al.  Distributed GraphLab : A Framework for Machine Learning and Data Mining in the Cloud , 2012 .

[89]  Pieter Hintjens,et al.  ZeroMQ: Messaging for Many Applications , 2013 .

[90]  D. Delen,et al.  Business Intelligence and Analytics: Systems for Decision Support , 2014 .

[91]  Charu C. Aggarwal,et al.  Mining Text Data , 2012, Springer US.

[92]  Peter J. Haas,et al.  Ricardo: integrating R and Hadoop , 2010, SIGMOD Conference.

[93]  Ping Pan,et al.  Internet Engineering Task Force , 1995 .

[94]  Honghai Liu,et al.  Intelligent Video Systems and Analytics: A Survey , 2013, IEEE Transactions on Industrial Informatics.

[95]  Catherine Mulligan,et al.  From Machine-to-Machine to the Internet of Things - Introduction to a New Age of Intelligence , 2014 .

[96]  Seref Sagiroglu,et al.  Big data: A review , 2013, 2013 International Conference on Collaboration Technologies and Systems (CTS).

[97]  Alejandro Baldominos Gómez,et al.  A scalable machine learning online service for big data real-time analysis , 2014, 2014 IEEE Symposium on Computational Intelligence in Big Data (CIBD).

[98]  Biswanath Mukherjee,et al.  Wireless sensor network survey , 2008, Comput. Networks.

[99]  Mohsen Guizani,et al.  Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications , 2015, IEEE Communications Surveys & Tutorials.

[100]  Matthias Weidlich,et al.  DEBS Grand Challenge: Scalable Stateful Stream Processing for Smart Grids , 2014 .

[101]  Holger Ziekow,et al.  The DEBS 2014 grand challenge , 2014, DEBS '14.

[102]  張正儀,et al.  基於Google Cloud Platform設計高效能日誌分析平台之研究 , 2017 .

[103]  Ellen van Nunen,et al.  Cooperative Competition for Future Mobility , 2012, IEEE Transactions on Intelligent Transportation Systems.

[104]  Jung Hoon Lee,et al.  Technological Forecasting & Social Change Towards an effective framework for building smart cities : Lessons from Seoul and San Francisco , 2014 .

[105]  Hugh C. Davis,et al.  LHD: Optimising Linked Data Query Processing Using Parallelisation , 2013, LDOW.

[106]  Hugo Krawczyk,et al.  A Security Architecture for the Internet Protocol , 1999, IBM Syst. J..

[107]  Antonio F. Gómez-Skarmeta,et al.  Mobile Digcovery: A Global Service Discovery for the Internet of Things , 2013, 2013 27th International Conference on Advanced Information Networking and Applications Workshops.

[108]  Olaf Hartig,et al.  An Overview on Execution Strategies for Linked Data Queries , 2013, Datenbank-Spektrum.

[109]  R. W. Jones The International Telecommunication Union , 1997 .

[110]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[111]  Matthias Weidlich,et al.  Scalable stateful stream processing for smart grids , 2014, DEBS '14.

[112]  Andrea Tosatto,et al.  Container-Based Orchestration in Cloud: State of the Art and Challenges , 2015, 2015 Ninth International Conference on Complex, Intelligent, and Software Intensive Systems.

[113]  Kyoungho An,et al.  Functional Reactive Stream Processing for Data-centric , 2014 .

[114]  Himadri Sekhar Paul,et al.  Utilising condor for data parallel analytics in an IoT context — An experience report , 2013, 2013 IEEE 9th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob).

[115]  Massimiliano Manfren,et al.  Building Automation and Control Systems and performance optimization: A framework for analysis , 2017 .

[116]  Jürgen Schönwälder,et al.  Network configuration management using NETCONF and YANG , 2010, IEEE Communications Magazine.

[117]  VARUN CHANDOLA,et al.  Anomaly detection: A survey , 2009, CSUR.

[118]  Jorge Sá Silva,et al.  Security for the Internet of Things: A Survey of Existing Protocols and Open Research Issues , 2015, IEEE Communications Surveys & Tutorials.

[119]  Soma Bandyopadhyay,et al.  Role Of Middleware For Internet Of Things: A Study , 2011 .

[120]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[121]  Carlos Maltzahn,et al.  Ceph: a scalable, high-performance distributed file system , 2006, OSDI '06.

[122]  Kenneth C. Lichtendahl,et al.  Data Mining for Business Analytics: Concepts, Techniques, and Applications with XLMiner , 2016 .

[123]  Graham J. Williams,et al.  Big Data Opportunities and Challenges: Discussions from Data Analytics Perspectives [Discussion Forum] , 2014, IEEE Computational Intelligence Magazine.

[124]  Linda M. Wills,et al.  Rapid precedent-aware pedestrian and car classification on constrained IoT platforms , 2016, 2016 14th ACM/IEEE Symposium on Embedded Systems For Real-time Multimedia (ESTIMedia).

[125]  Gareth Herschel,et al.  Gartner ' s Business Analytics Framework , 2012 .

[126]  Lida Xu,et al.  The internet of things: a survey , 2014, Information Systems Frontiers.

[127]  Le Gruenwald,et al.  A survey of data mining and knowledge discovery software tools , 1999, SKDD.

[128]  Gilbert Moïsio,et al.  Internet Engineering Task Force , 2014 .

[129]  Alexander Gluhak,et al.  SmartSantander: The meeting point between Future Internet research and experimentation and the smart cities , 2011, 2011 Future Network & Mobile Summit.

[130]  R. Viertl On the Future of Data Analysis , 2002 .

[131]  Emiliano Casalicchio Autonomic Orchestration of Containers: Problem Definition and Research Challenges , 2016, VALUETOOLS.

[132]  Zhu Wang,et al.  Living with Internet of Things: The Emergence of Embedded Intelligence , 2011, 2011 International Conference on Internet of Things and 4th International Conference on Cyber, Physical and Social Computing.

[133]  Bo Lu,et al.  Big Data Analytics in Chemical Engineering. , 2017, Annual review of chemical and biomolecular engineering.

[134]  Schahram Dustdar,et al.  PatRICIA -- A Novel Programming Model for IoT Applications on Cloud Platforms , 2013, 2013 IEEE 6th International Conference on Service-Oriented Computing and Applications.

[135]  Benjamin Depardon,et al.  Analysis of Six Distributed File Systems , 2013 .

[136]  Reynold Xin,et al.  GraphX: a resilient distributed graph system on Spark , 2013, GRADES.

[137]  Carsten Bormann,et al.  The Constrained Application Protocol (CoAP) , 2014, RFC.

[138]  Thanassis Tiropanis,et al.  Ewya: An Interoperable Fog Computing Infrastructure with RDF Stream Processing , 2017, INSCI.

[139]  Eric Campo,et al.  A review of smart homes - Present state and future challenges , 2008, Comput. Methods Programs Biomed..

[140]  Henry S. L. Fan,et al.  Heavy Flow-Based Incident Detection Algorithm Using Information From Two Adjacent Detector Stations , 2006, J. Intell. Transp. Syst..

[141]  Arkady B. Zaslavsky,et al.  Context-Aware Sensor Search, Selection and Ranking Model for Internet of Things Middleware , 2013, 2013 IEEE 14th International Conference on Mobile Data Management.

[142]  Arpan Pal,et al.  Challenges of Using Edge Devices in IoT Computation Grids , 2013, 2013 International Conference on Parallel and Distributed Systems.

[143]  Vipin Kumar,et al.  Trends in big data analytics , 2014, J. Parallel Distributed Comput..

[144]  Wouter Joosen,et al.  μPnP: plug and play peripherals for the internet of things , 2015, EuroSys.

[145]  Rajesh Vargheese,et al.  An IoT/IoE enabled architecture framework for precision on shelf availability: Enhancing proactive shopper experience , 2014, 2014 IEEE International Conference on Big Data (Big Data).

[146]  Galit Shmueli,et al.  Predictive Analytics in Information Systems Research , 2010, MIS Q..

[147]  Dieter Hayn,et al.  The Internet of Things for Ambient Assisted Living , 2010, 2010 Seventh International Conference on Information Technology: New Generations.

[148]  Prateep Misra,et al.  Data Analytics in Ubiquitous Sensor-Based Health Information Systems , 2012, 2012 Sixth International Conference on Next Generation Mobile Applications, Services and Technologies.

[149]  Philipp Haller,et al.  On the integration of the actor model in mainstream technologies: the scala perspective , 2012, AGERE! 2012.

[150]  Xinyu Yang,et al.  A Survey on Internet of Things: Architecture, Enabling Technologies, Security and Privacy, and Applications , 2017, IEEE Internet of Things Journal.

[151]  Feng Ye,et al.  Cloud-Based Big Data Mining & Analyzing Services Platform Integrating R , 2013, 2013 International Conference on Advanced Cloud and Big Data.

[152]  Gang Li,et al.  Big data related technologies, challenges and future prospects , 2015, J. Inf. Technol. Tour..

[153]  J. Manyika,et al.  Disruptive technologies: Advances that will transform life, business, and the global economy , 2013 .

[154]  Jürgen Umbrich,et al.  Querying over Federated SPARQL Endpoints - A State of the Art Survey , 2013, ArXiv.

[155]  T J Ulahannan,et al.  Decision Making in Health and Medicine: Integrating Evidence and Values , 2002 .

[156]  J. Reades,et al.  The Global Information Technology Report 2012 , 2012 .

[157]  Veda C. Storey,et al.  Business Intelligence and Analytics: From Big Data to Big Impact , 2012, MIS Q..

[158]  E. Abad,et al.  RFID smart tag for traceability and cold chain monitoring of foods: Demonstration in an intercontinental fresh fish logistic chain , 2009 .

[159]  G. O’Brien,et al.  Environment, economy and society: fitting them together into sustainable development , 2002 .

[160]  Partha Pratim Ray A survey on Internet of Things architectures , 2018, J. King Saud Univ. Comput. Inf. Sci..

[161]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.

[162]  Nathan Marz,et al.  Big Data: Principles and best practices of scalable realtime data systems , 2015 .

[163]  M. Anusha,et al.  Big Data-Survey , 2016 .

[164]  Wu He,et al.  Developing Vehicular Data Cloud Services in the IoT Environment , 2014, IEEE Transactions on Industrial Informatics.

[165]  Jacky Akoka,et al.  Research on Big Data - A systematic mapping study , 2017, Comput. Stand. Interfaces.

[166]  Michael J. Franklin,et al.  Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing , 2012, NSDI.

[167]  S. Rajaram,et al.  A survey on forecasting of time series data , 2016, 2016 International Conference on Computing Technologies and Intelligent Data Engineering (ICCTIDE'16).

[168]  Michele Rossi,et al.  Data Analytics for Smart Parking Applications , 2016, Sensors.

[169]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1971 .

[170]  Sheng Huang,et al.  TSAaaS: Time Series Analytics as a Service on IoT , 2014, 2014 IEEE International Conference on Web Services.

[171]  Chao Lan,et al.  Anomaly Detection , 2018, Encyclopedia of GIS.

[172]  Jiajie Xu,et al.  IOT-StatisticDB: A General Statistical Database Cluster Mechanism for Big Data Analysis in the Internet of Things , 2013, 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing.

[173]  Michael Zeller,et al.  Efficient deployment of predictive analytics through open standards and cloud computing , 2009, SKDD.

[174]  angeline m,et al.  Gartner’s 2015 Hype Cycle For Emerging Technologies Identifies The Computing Improvements That Organizations Ought to Monitor , 2017 .

[175]  Freddy Lécué,et al.  Adapting Semantic Sensor Networks for Smart Building Diagnosis , 2014, International Semantic Web Conference.

[176]  Yingcai Wu,et al.  A Survey of Visual Analytics Techniques and Applications: State-of-the-Art Research and Future Challenges , 2013, Journal of Computer Science and Technology.

[177]  Hussnain Ahmed Applying Big Data analytics for energy efficiency. , 2014 .

[178]  Kerry L. Taylor,et al.  Semantics for the Internet of Things: Early Progress and Back to the Future , 2019 .