Message-passing for Graph-structured Linear Programs: Proximal Methods and Rounding Schemes

The problem of computing a maximum a posteriori (MAP) configuration is a central computational challenge associated with Markov random fields. There has been some focus on "tree-based" linear programming (LP) relaxations for the MAP problem. This paper develops a family of super-linearly convergent algorithms for solving these LPs, based on proximal minimization schemes using Bregman divergences. As with standard message-passing on graphs, the algorithms are distributed and exploit the underlying graphical structure, and so scale well to large problems. Our algorithms have a double-loop character, with the outer loop corresponding to the proximal sequence, and an inner loop of cyclic Bregman projections used to compute each proximal update. We establish convergence guarantees for our algorithms, and illustrate their performance via some simulations. We also develop two classes of rounding schemes, deterministic and randomized, for obtaining integral configurations from the LP solutions. Our deterministic rounding schemes use a "re-parameterization" property of our algorithms so that when the LP solution is integral, the MAP solution can be obtained even before the LP-solver converges to the optimum. We also propose graph-structured randomized rounding schemes applicable to iterative LP-solving algorithms in general. We analyze the performance of and report simulations comparing these rounding schemes.

[1]  M. Solodov,et al.  A UNIFIED FRAMEWORK FOR SOME INEXACT PROXIMAL POINT ALGORITHMS , 2001 .

[2]  Heinz H. Bauschke,et al.  Legendre functions and the method of random Bregman projections , 1997 .

[3]  Shih-Ping Han,et al.  A successive projection method , 1988, Math. Program..

[4]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[5]  Yair Weiss,et al.  MAP Estimation, Linear Programming and Belief Propagation with Convex Free Energies , 2007, UAI.

[6]  Paul Tseng,et al.  On the convergence of the exponential multiplier method for convex programming , 1993, Math. Program..

[7]  Martin J. Wainwright,et al.  Tree-based reparameterization framework for analysis of sum-product and related algorithms , 2003, IEEE Trans. Inf. Theory.

[8]  Martin J. Wainwright,et al.  Linear Programming-Based Decoding of Turbo-Like Codes and its Relation to Iterative Approaches , 2002 .

[9]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Michael I. Jordan,et al.  Treewidth-based conditions for exactness of the Sherali-Adams and Lasserre relaxations , 2004 .

[11]  Frank Deutsch,et al.  The rate of convergence for the cyclic projections algorithm I: Angles between convex sets , 2006, J. Approx. Theory.

[12]  Pradeep Ravikumar,et al.  Quadratic programming relaxations for metric labeling and Markov random field MAP estimation , 2006, ICML.

[13]  Michael I. Jordan Graphical Models , 2003 .

[14]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[15]  Martin J. Wainwright,et al.  MAP estimation via agreement on trees: message-passing and linear programming , 2005, IEEE Transactions on Information Theory.

[16]  VekslerOlga,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001 .

[17]  Andrzej Stachurski,et al.  Parallel Optimization: Theory, Algorithms and Applications , 2000, Parallel Distributed Comput. Pract..

[18]  Vladimir Kolmogorov,et al.  Convergent Tree-Reweighted Message Passing for Energy Minimization , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Dmitry M. Malioutov,et al.  Lagrangian Relaxation for MAP Estimation in Graphical Models , 2007, ArXiv.

[20]  William T. Freeman,et al.  On the optimality of solutions of the max-product belief-propagation algorithm in arbitrary graphs , 2001, IEEE Trans. Inf. Theory.

[21]  R. Dykstra An Iterative Procedure for Obtaining $I$-Projections onto the Intersection of Convex Sets , 1985 .

[22]  D. Greig,et al.  Exact Maximum A Posteriori Estimation for Binary Images , 1989 .

[23]  Bert Huang,et al.  Loopy Belief Propagation for Bipartite Maximum Weight b-Matching , 2007, AISTATS.

[24]  John N. Tsitsiklis,et al.  Introduction to linear optimization , 1997, Athena scientific optimization and computation series.

[25]  William T. Freeman,et al.  Constructing free-energy approximations and generalized belief propagation algorithms , 2005, IEEE Transactions on Information Theory.

[26]  Tommi S. Jaakkola,et al.  Convergent Propagation Algorithms via Oriented Trees , 2007, UAI.

[27]  Martin J. Wainwright,et al.  On the Optimality of Tree-reweighted Max-product Message-passing , 2005, UAI.

[28]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[29]  Martin J. Wainwright,et al.  A new class of upper bounds on the log partition function , 2002, IEEE Transactions on Information Theory.

[30]  Yair Weiss,et al.  Linear Programming Relaxations and Belief Propagation - An Empirical Study , 2006, J. Mach. Learn. Res..

[31]  Martin J. Wainwright,et al.  Tree consistency and bounds on the performance of the max-product algorithm and its generalizations , 2004, Stat. Comput..

[32]  Prabhakar Raghavan,et al.  Randomized rounding: A technique for provably good algorithms and algorithmic proofs , 1985, Comb..

[33]  Tamir Hazan,et al.  Convergent Message-Passing Algorithms for Inference over General Graphs with Convex Free Energies , 2008, UAI.

[34]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[35]  Nikos Komodakis,et al.  MRF Optimization via Dual Decomposition: Message-Passing Revisited , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[36]  Michael I. Jordan,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..

[37]  Éva Tardos,et al.  Approximation algorithms for classification problems with pairwise relationships: metric labeling and Markov random fields , 2002, JACM.

[38]  Christian Borgs,et al.  Belief Propagation for Weighted b-Matchings on Arbitrary Graphs and its Relation to Linear Programs with Integer Solutions , 2007, SIAM J. Discret. Math..

[39]  Umberto Bertelè,et al.  Nonserial Dynamic Programming , 1972 .

[40]  Tommi S. Jaakkola,et al.  Fixing Max-Product: Convergent Message Passing Algorithms for MAP LP-Relaxations , 2007, NIPS.

[41]  Devavrat Shah,et al.  Message Passing for Max-weight Independent Set , 2007, NIPS.

[42]  Marc Teboulle,et al.  Convergence Rate Analysis of Nonquadratic Proximal Methods for Convex and Linear Programming , 1995, Math. Oper. Res..

[43]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[44]  Joseph Naor,et al.  A Linear Programming Formulation and Approximation Algorithms for the Metric Labeling Problem , 2005, SIAM J. Discret. Math..

[45]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[46]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[47]  Y. Censor,et al.  Parallel Optimization: Theory, Algorithms, and Applications , 1997 .

[48]  M. Solodov,et al.  A UNIFIED FRAMEWORK FOR SOME INEXACT PROXIMAL POINT ALGORITHMS , 2001 .

[49]  Andrew Zisserman,et al.  Solving Markov Random Fields using Second Order Cone Programming Relaxations , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[50]  Devavrat Shah,et al.  Maximum weight matching via max-product belief propagation , 2005, ISIT.