Concept Discovery and Argument Bundles in the Experience Web

In this paper we focus on a particular interesting web user-generated content: people’s experiences. We extend our previous work on aspect extraction and sentiment analysis and propose a novel approach to create a vocabulary of basic level concepts with the appropriate granularity to characterize a set of products. This concept vocabulary is created by analyzing the usage of the aspects over a set of reviews, and allows us to find those features with a clear positive and negative polarity to create the bundles of arguments. The argument bundles allow us to define a concept-wise satisfaction degree of a user query over a set of bundles using the notion of fuzzy implication, allowing the reuse experiences of other people to the needs a specific user.

[1]  Shlomo Yitzhaki,et al.  Relative Deprivation and the Gini Coefficient , 1979 .

[2]  Yu Sun,et al.  Automatic Extraction for Product Feature Words from Comments on the Web , 2009, AIRS.

[3]  Ivan Titov,et al.  A Joint Model of Text and Aspect Ratings for Sentiment Summarization , 2008, ACL.

[4]  Christopher D. Manning,et al.  Analyzing the Dynamics of Research by Extracting Key Aspects of Scientific Papers , 2011, IJCNLP.

[5]  Meng Wang,et al.  Product Aspect Ranking and Its Applications , 2014, IEEE Transactions on Knowledge and Data Engineering.

[6]  Marcus A. Maloof,et al.  Dynamic weighted majority: a new ensemble method for tracking concept drift , 2003, Third IEEE International Conference on Data Mining.

[7]  Equivalence between Tie-corrected Spearman Test and a Chi-square Test in a Fourfold Contingency Table , 1988 .

[8]  Bing Liu,et al.  Opinion observer: analyzing and comparing opinions on the Web , 2005, WWW '05.

[9]  Maria Teresa Pazienza,et al.  Information Extraction A Multidisciplinary Approach to an Emerging Information Technology , 1997, Lecture Notes in Computer Science.

[10]  Himabindu Lakkaraju,et al.  Exploiting Coherence for the Simultaneous Discovery of Latent Facets and associated Sentiments , 2011, SDM.

[11]  Lingling Meng,et al.  A Review of Semantic Similarity Measures in WordNet 1 , 2013 .

[12]  Wayne D. Gray,et al.  Basic objects in natural categories , 1976, Cognitive Psychology.

[13]  Andrew McCallum,et al.  Information extraction from research papers using conditional random fields , 2006, Inf. Process. Manag..

[14]  Tiejun Zhao,et al.  Target-dependent Twitter Sentiment Classification , 2011, ACL.

[15]  Yue Lu,et al.  Latent aspect rating analysis without aspect keyword supervision , 2011, KDD.

[16]  Iyad Rahwan,et al.  Laying the foundations for a World Wide Argument Web , 2007, Artif. Intell..

[17]  Phan Minh Dung,et al.  An Abstract, Argumentation-Theoretic Approach to Default Reasoning , 1997, Artif. Intell..

[18]  Janyce Wiebe,et al.  A Computational Theory of Perspective and Reference in Narrative , 1988, ACL.

[19]  Barry Smyth,et al.  Great Explanations: Opinionated Explanations for Recommendations , 2015, ICCBR.

[20]  Enric Plaza,et al.  Principle and Praxis in the Experience Web : A Case Study in Social Music , 2009 .

[21]  Ralph H. Johnson Manifest Rationality: A Pragmatic Theory of Argument , 2000 .

[22]  Regina Barzilay,et al.  Automatic Aggregation by Joint Modeling of Aspects and Values , 2014, J. Artif. Intell. Res..

[23]  Enric Plaza,et al.  Preference and Sentiment Guided Social Recommendations with Temporal Dynamics , 2014, SGAI Conf..

[24]  Petr Hájek,et al.  A complete many-valued logic with product-conjunction , 1996, Arch. Math. Log..

[25]  Mary Dalrymple,et al.  The PARC 700 Dependency Bank , 2003, LINC@EACL.

[26]  Konrad P. Körding,et al.  A high-reproducibility and high-accuracy method for automated topic classification , 2014, ArXiv.

[27]  Cristina Bosco,et al.  Developing Corpora for Sentiment Analysis: The Case of Irony and Senti-TUT , 2013, IEEE Intelligent Systems.

[28]  Bing Liu,et al.  Mining and summarizing customer reviews , 2004, KDD.

[29]  Barry Smyth,et al.  Further Experiments in Opinionated Product Recommendation , 2014, ICCBR.

[30]  Tao Li,et al.  Product recommendation with temporal dynamics , 2012, Expert Syst. Appl..

[31]  Barry Smyth,et al.  Personalized Opinion-Based Recommendation , 2016, ICCBR.

[32]  Thomas Hofmann,et al.  Probabilistic Latent Semantic Analysis , 1999, UAI.

[33]  Janyce Wiebe,et al.  Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis , 2005, HLT.

[34]  Razvan C. Bunescu,et al.  Sentiment analyzer: extracting sentiments about a given topic using natural language processing techniques , 2003, Third IEEE International Conference on Data Mining.

[35]  Ellen Riloff,et al.  Exploiting Subjectivity Classification to Improve Information Extraction , 2005, AAAI.

[36]  Douglas Walton,et al.  Informal Logic: A Pragmatic Approach , 2008 .

[37]  Phan Minh Dung,et al.  On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games , 1995, Artif. Intell..

[38]  S. Kapur,et al.  The seats of reason? An imaging study of deductive and inductive reasoning , 1997, Neuroreport.

[39]  Sasha Blair-Goldensohn,et al.  Building a Sentiment Summarizer for Local Service Reviews , 2008 .

[40]  Alice H. Oh,et al.  Aspect and sentiment unification model for online review analysis , 2011, WSDM '11.

[41]  Bing Liu,et al.  Mining Opinion Features in Customer Reviews , 2004, AAAI.

[42]  Eric Chang,et al.  Red Opal: product-feature scoring from reviews , 2007, EC '07.

[43]  William E. Winkler,et al.  The State of Record Linkage and Current Research Problems , 1999 .

[44]  Oren Etzioni,et al.  RevMiner: an extractive interface for navigating reviews on a smartphone , 2012, UIST.

[45]  Maarten de Rijke,et al.  Identifying entity aspects in microblog posts , 2012, SIGIR '12.

[46]  Qiang Yang,et al.  Transferring topical knowledge from auxiliary long texts for short text clustering , 2011, CIKM '11.

[47]  Petra Perner,et al.  Data Mining - Concepts and Techniques , 2002, Künstliche Intell..

[48]  Kerstin Denecke,et al.  Using SentiWordNet for multilingual sentiment analysis , 2008, 2008 IEEE 24th International Conference on Data Engineering Workshop.

[49]  Janusz S. Bień,et al.  Beliefs, Points of View, and Multiple Environments , 1983, Cogn. Sci..

[50]  Stewart Massie,et al.  Unsupervised Feature Selection for Text Data , 2006, ECCBR.

[51]  Susan T. Dumais,et al.  Inductive learning algorithms and representations for text categorization , 1998, CIKM '98.

[52]  Enric Plaza,et al.  On Reusing Other People's Experiences , 2009, Künstliche Intell..

[53]  Yuji Matsumoto,et al.  Opinion Mining on the Web by Extracting Subject-Aspect-Evaluation Relations , 2006, AAAI Spring Symposium: Computational Approaches to Analyzing Weblogs.

[54]  Ivan Titov,et al.  Modeling online reviews with multi-grain topic models , 2008, WWW.

[55]  Oren Etzioni,et al.  Extracting Product Features and Opinions from Reviews , 2005, HLT.

[56]  Nirmalie Wiratunga,et al.  Contextual Sentiment Analysis in Social Media Using High-Coverage Lexicon , 2013, SGAI Conf..

[57]  Peter,et al.  Semantic Unification , 2008 .

[58]  Yehuda Koren,et al.  Collaborative filtering with temporal dynamics , 2009, KDD.

[59]  Adam L. Berger,et al.  A Maximum Entropy Approach to Natural Language Processing , 1996, CL.

[60]  Amanda Spink,et al.  Searching the Web: the public and their queries , 2001 .

[61]  Paul Thagard,et al.  Evaluating Explanations in Law, Science, and Everyday Life , 2006 .

[62]  German Rigau,et al.  Word vs. Class-Based Word Sense Disambiguation , 2015, J. Artif. Intell. Res..

[63]  Enric Plaza,et al.  Sentiment and Preference Guided Social Recommendation , 2014, ICCBR.

[64]  Peter Wiemer-Hastings,et al.  Latent semantic analysis , 2004, Annu. Rev. Inf. Sci. Technol..

[65]  E. Rosch,et al.  Cognition and Categorization , 1980 .

[66]  Enric Plaza,et al.  Case-Based Sequential Ordering of Songs for Playlist Recommendation , 2006, ECCBR.

[67]  Fabrizio Sebastiani,et al.  Machine learning in automated text categorization , 2001, CSUR.

[68]  Harith Alani,et al.  Adapting Sentiment Lexicons Using Contextual Semantics for Sentiment Analysis of Twitter , 2014, ESWC.

[69]  Peter D. Turney Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews , 2002, ACL.

[70]  Rohini K. Srihari,et al.  OpinionMiner: a novel machine learning system for web opinion mining and extraction , 2009, KDD.

[71]  Markus Schaal,et al.  Opinionated Product Recommendation , 2013, ICCBR.

[72]  Barry Smyth,et al.  Mining Features and Sentiment from Review Experiences , 2013, ICCBR.

[73]  Enric Plaza,et al.  Semantics and Experience in the Future Web , 2008, ECCBR.

[74]  Martin Ester,et al.  ILDA: interdependent LDA model for learning latent aspects and their ratings from online product reviews , 2011, SIGIR.

[75]  Ted Briscoe,et al.  Corpus Annotation for Parser Evaluation , 1999, ArXiv.

[76]  Vincent Aleven,et al.  Toward Legal Argument Instruction with Graph Grammars and Collaborative Filtering Techniques , 2006, Intelligent Tutoring Systems.

[77]  Stewart Massie,et al.  Term Similarity and Weighting Framework for Text Representation , 2011, ICCBR.

[78]  Enric Plaza,et al.  A Case-Based Song Scheduler for Group Customised Radio , 2007, ICCBR.

[79]  Philip S. Yu,et al.  A holistic lexicon-based approach to opinion mining , 2008, WSDM '08.

[80]  Jimeng Sun,et al.  Temporal recommendation on graphs via long- and short-term preference fusion , 2010, KDD.

[81]  Nicolas Nicolov,et al.  Targeting Sentiment Expressions through Supervised Ranking of Linguistic Configurations , 2009, ICWSM.

[82]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[83]  Martin Ester,et al.  Opinion digger: an unsupervised opinion miner from unstructured product reviews , 2010, CIKM.

[84]  German Rigau,et al.  Exploring the Automatic Selection of Basic Level Concepts , 2006 .

[85]  Xuanjing Huang,et al.  Phrase Dependency Parsing for Opinion Mining , 2009, EMNLP.

[86]  Karin Baier,et al.  The Uses Of Argument , 2016 .

[87]  Amélie Marian,et al.  Beyond the Stars: Improving Rating Predictions using Review Text Content , 2009, WebDB.

[88]  Hae-Chang Rim,et al.  Lexicalized Hidden Markov Models for Part-of-Speech Tagging , 2000, COLING.

[89]  Reedchris,et al.  Towards an argument interchange format , 2006 .

[90]  P. Anderson What is Web 2.0? Ideas, technologies and implications for education , 2007 .

[91]  Ronald Loui A Citation-based Reflection on Toulmin and Argument , 2005 .

[92]  H. Abdi The Kendall Rank Correlation Coefficient , 2007 .

[93]  Li Chen,et al.  Recommender systems based on user reviews: the state of the art , 2015, User Modeling and User-Adapted Interaction.

[94]  Barry Smyth,et al.  Many cases make light work for visualization in many eyes , 2009 .

[95]  Anne Kao,et al.  Natural Language Processing and Text Mining , 2006 .

[96]  Xue Li,et al.  Time weight collaborative filtering , 2005, CIKM '05.

[97]  Mário J. Silva,et al.  Clues for detecting irony in user-generated contents: oh...!! it's "so easy" ;-) , 2009, TSA@CIKM.

[98]  Aidan Waugh,et al.  Using Experience on the Read/Write Web: The GhostWriter System , 2009 .

[99]  A. Baddeley Working Memory and Conscious Awareness , 2019, Theories of Memory.

[100]  Rosina O. Weber,et al.  Adapting Sentiments with Context , 2015, ICCBR.

[101]  Trevor J. M. Bench-Capon,et al.  Argumentation in artificial intelligence , 2007, Artif. Intell..

[102]  Ralph Grishman,et al.  Information Extraction: Techniques and Challenges , 1997, SCIE.

[103]  Sutanu Chakraborti,et al.  Mining user trails in critiquing based recommenders , 2014, WWW.

[104]  Rob Malouf,et al.  A Comparison of Algorithms for Maximum Entropy Parameter Estimation , 2002, CoNLL.

[105]  Bing Liu,et al.  Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data , 2006, Data-Centric Systems and Applications.

[106]  Guohong Fu,et al.  Chinese named entity recognition using lexicalized HMMs , 2005, SKDD.

[107]  Andrew McCallum,et al.  Rethinking LDA: Why Priors Matter , 2009, NIPS.

[108]  Daniel D. Suthers,et al.  Architectures for computer supported collaborative learning , 2001, Proceedings IEEE International Conference on Advanced Learning Technologies.

[109]  Bo Pang,et al.  Thumbs up? Sentiment Classification using Machine Learning Techniques , 2002, EMNLP.

[110]  David M. Blei,et al.  Probabilistic topic models , 2012, Commun. ACM.

[111]  Marina Weber,et al.  Elements Of Episodic Memory , 2016 .

[112]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[113]  Diana Maynard,et al.  Who cares about Sarcastic Tweets? Investigating the Impact of Sarcasm on Sentiment Analysis. , 2014, LREC.

[114]  Derek Bridge,et al.  The GhostWriter-2 . 0 System : Creating a Virtuous Circle in Web 2 . 0 Product Reviewing , 2010 .

[115]  Nuria Oliver,et al.  I Like It... I Like It Not: Evaluating User Ratings Noise in Recommender Systems , 2009, UMAP.

[116]  Zhen Hai,et al.  Implicit Feature Identification via Co-occurrence Association Rule Mining , 2011, CICLing.

[117]  Klaus-Dieter Althoff,et al.  Extraction of Adaptation Knowledge from Internet Communities , 2009, LWA.

[118]  Soo-Min Kim,et al.  Automatic Identification of Pro and Con Reasons in Online Reviews , 2006, ACL.

[119]  Martin Ester,et al.  On the design of LDA models for aspect-based opinion mining , 2012, CIKM.

[120]  Derek G. Bridge,et al.  The GhostWriter-2.0 Case-Based Reasoning system for making content suggestions to the authors of product reviews , 2012, Knowl. Based Syst..

[121]  Barry Smyth,et al.  Experience-Based Critiquing: Reusing Critiquing Experiences to Improve Conversational Recommendation , 2010, ICCBR.

[122]  Enric Plaza,et al.  Aspect Selection for Social Recommender Systems , 2015, ICCBR.

[123]  Christopher D. Manning,et al.  Generating Typed Dependency Parses from Phrase Structure Parses , 2006, LREC.

[124]  Iryna Gurevych,et al.  Extracting Opinion Targets in a Single and Cross-Domain Setting with Conditional Random Fields , 2010, EMNLP.

[125]  Yoon Ho Cho,et al.  Mining changes in customer buying behavior for collaborative recommendations , 2005, Expert Syst. Appl..

[126]  E. Tulving Episodic and semantic memory: Where should we go from here? , 1986, Behavioral and Brain Sciences.

[127]  Claire Cardie,et al.  Multi-aspect Sentiment Analysis with Topic Models , 2011, 2011 IEEE 11th International Conference on Data Mining Workshops.

[128]  Royi Ronen,et al.  Selecting content-based features for collaborative filtering recommenders , 2013, RecSys.

[129]  Andrea Esuli,et al.  SENTIWORDNET: A Publicly Available Lexical Resource for Opinion Mining , 2006, LREC.

[130]  Chun-hung Li,et al.  Semantic Dependent Word Pairs Generative Model for Fine-Grained Product Feature Mining , 2011, PAKDD.

[131]  Pablo Noriega,et al.  A Framework for Argumentation-Based Negotiation , 1997, ATAL.

[132]  Xiaoyan Zhu,et al.  Movie review mining and summarization , 2006, CIKM '06.

[133]  R. Kies,et al.  Online Forums and Deliberative Democracy , 2005 .

[134]  Andrea Esuli,et al.  SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining , 2010, LREC.

[135]  Suk Hwan Lim,et al.  Extracting and Ranking Product Features in Opinion Documents , 2010, COLING.

[136]  Michal Karpowicz,et al.  Opinion Mining on the Web 2.0 - Characteristics of User Generated Content and Their Impacts , 2013, CHI-KDD.

[137]  Dan Klein,et al.  Accurate Unlexicalized Parsing , 2003, ACL.