Generalized thermodynamic ensembles for fractal measures

SummaryFractal measures are characterized by means of suitable conservation laws which can be expressed either by introducing pointwise dimensions (local approach) or by evaluating global dynamical invariants like the dimension functionD(q). The two points of view are formally equivalent to statistical mechanics and thermodynamics, respectively. Nonlinear dissipative dynamical systems are mapped onto one-dimensional Hamiltonian spin models with the introduction of appropriate statistical ensembles, using symbolic dynamics. The various thermodynamic ensembles are shown to be related to different covering procedures for fractal measures. Nonanalytic behaviour of the dimension functionD(q) is interpreted in terms of phase transitions on the time lattice. This phenomenon, occurring for non-self-similar measures, is due to long-time correlations in the symbolic dynamics and is not restricted to nonhyperbolic systems.RiassuntoLe misure frattali vengono caratterizzate per mezzo di leggi di conservazione che possono essere espresse introducendo dimensioni puntiformi (approccio locale) o valutando invarianti dinamici globali come la funzione dimensioneD(q). I due punti di vista sono formalmente equivalenti a meccanica statistica e termodinamica, rispettivamente. Attraverso la dinamica simbolica, è possibile rappresentare i sistemi dinamici dissipativi nonlineari per mezzo di modelli di spin Hamiltoniani in reticoli unidimensionali, con l'introduzione di insiemi statistici appropriati. Si mostra che i vari insiemi termodinamici sono legati all'adozione di diversi ricoprimenti delle misure frattali. Il comportamento non analitico della funzione dimensioneD(q) viene interpretato in termini di transizioni di fase sul reticolo temporale. Questo fenomeno, che appare nelle misure non «auto-similari», è dovuto a correlazioni a tempi lunghi nella dinamica simbolica e non è ristretto ai sistemi non iperbolici.РезюмеФрактальные меры характеризуются с помощью соответствующих законов сохранения, которые могут быть выражены путем введения точечных размерностей (локальный подход) или путем вычисления глобальных динамических инвариантов, подобных функции размерностиD(q). Эти две точки зрения являются формально эквивалентными соответственно статистической механике и термодинамике. Нелинейные диссипативные динамические системы отображаются в одномерные гамильтоновы спиновые модели с введением соответствующих статистических ансамблей, используя символическую динамику. Показывается, что различные термодинамические ансамбли связаны с различными процедурами для фрактальных мер. Неаналитическое поведение функции размерностиD(q) интерпретируется в терминах фазовых переходов на временной решетке. Это явление, возникающее для несамоподобных мер, обусловлено длинно-временными корреляциями в символической динамике и не ограничено негиперболическими системами.

[1]  D. C. Mattis,et al.  Mathematical physics in one dimension , 1966 .

[2]  P. Billingsley,et al.  Ergodic theory and information , 1966 .

[3]  F. Takens,et al.  On the nature of turbulence , 1971 .

[4]  Y. Sinai GIBBS MEASURES IN ERGODIC THEORY , 1972 .

[5]  P. Walters Ergodic theory: Introductory lectures , 1975 .

[6]  M. Hénon,et al.  A two-dimensional mapping with a strange attractor , 1976 .

[7]  Y. Pesin CHARACTERISTIC LYAPUNOV EXPONENTS AND SMOOTH ERGODIC THEORY , 1977 .

[8]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[9]  M. Feigenbaum Quantitative universality for a class of nonlinear transformations , 1978 .

[10]  U. Frisch FULLY DEVELOPED TURBULENCE AND INTERMITTENCY , 1980 .

[11]  J. Eckmann Roads to turbulence in dissipative dynamical systems , 1981 .

[12]  V. Alekseev,et al.  Symbolic dynamics and hyperbolic dynamic systems , 1981 .

[13]  J. Yorke,et al.  Dimension of chaotic attractors , 1982 .

[14]  H. G. E. Hentschel,et al.  The infinite number of generalized dimensions of fractals and strange attractors , 1983 .

[15]  P. Grassberger Generalized dimensions of strange attractors , 1983 .

[16]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[17]  Antonio Politi,et al.  Hausdorff Dimension and Uniformity Factor of Strange Attractors , 1984 .

[18]  J. Brickmann B. Mandelbrot: The Fractal Geometry of Nature, Freeman and Co., San Francisco 1982. 460 Seiten, Preis: £ 22,75. , 1985 .

[19]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[20]  Cohen,et al.  Computing the Kolmogorov entropy from time signals of dissipative and conservative dynamical systems. , 1985, Physical review. A, General physics.

[21]  P. Grassberger,et al.  Generating partitions for the dissipative Hénon map , 1985 .

[22]  Jensen,et al.  Time ordering and the thermodynamics of strange sets: Theory and experimental tests. , 1986, Physical review letters.

[23]  Jensen,et al.  Erratum: Fractal measures and their singularities: The characterization of strange sets , 1986, Physical review. A, General physics.

[24]  T. Tél Characteristic exponents of chaotic repellers as eigenvalues , 1986 .

[25]  Tél,et al.  New approach to the problem of chaotic repellers. , 1986, Physical review. A, General physics.

[26]  Jensen,et al.  Scaling structure and thermodynamics of strange sets. , 1987, Physical review. A, General physics.

[27]  Dimension function and phase transition-like behavior in strange attractors , 1987 .

[28]  Mitchell J. Feigenbaum Some characterizations of strange sets , 1987 .

[29]  Pierre Collet,et al.  The dimension spectrum of some dynamical systems , 1987 .

[30]  Itamar Procaccia,et al.  Phase transitions in the thermodynamic formalism of multifractals. , 1987 .

[31]  Broggi,et al.  Dimension increase in filtered chaotic signals. , 1988, Physical review letters.

[32]  Meier,et al.  Correlation functions and generalized Lyapunov exponents. , 1988, Physical review. A, General physics.

[33]  P. Grassberger,et al.  Scaling laws for invariant measures on hyperbolic and nonhyperbolic atractors , 1988 .

[34]  G. Broggi,et al.  Measurement of the dimension spectrum ƒ(α): Fixed-mass approach , 1988 .

[35]  G. Broggi,et al.  Evaluation of dimensions and entropies of chaotic systems , 1988 .

[36]  R. Badii,et al.  Conservation laws and thermodynamic formalism for Dissipative Dynamical Systems , 1989 .