Data Mining with Sparse Grids
暂无分享,去创建一个
[1] G. Faber. Über stetige Funktionen , 1908 .
[2] N. Aronszajn. Theory of Reproducing Kernels. , 1950 .
[3] M. Stone. Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .
[4] A. N. Tikhonov,et al. Solutions of ill-posed problems , 1977 .
[5] F. Utreras. Cross-validation techniques for smoothing spline functions in one or two dimensions , 1979 .
[6] G. Golub,et al. Good Ridge Parameter , 1979 .
[7] G. Baszenski. n-th Order Polynomial Spline Blending , 1985 .
[8] G. Wahba. A Comparison of GCV and GML for Choosing the Smoothing Parameter in the Generalized Spline Smoothing Problem , 1985 .
[9] H. Yserentant. On the multi-level splitting of finite element spaces , 1986 .
[10] Harry Yserentant,et al. On the multi-level splitting of finite element spaces , 1986 .
[11] V. N. Temli︠a︡kov. Approximation of functions with bounded mixed derivative , 1989 .
[12] Christian Lebiere,et al. The Cascade-Correlation Learning Architecture , 1989, NIPS.
[13] Grace Wahba,et al. Spline Models for Observational Data , 1990 .
[14] Harry Yserentant,et al. Hierarchical bases , 1992 .
[15] O. Mangasarian,et al. Robust linear programming discrimination of two linearly inseparable sets , 1992 .
[16] Ulrich Rüde,et al. The Combination Technique for Parallel Sparse-Grid-Preconditioning or -Solution of PDEs on Workstation Networks , 1992, Conference on Algorithms and Hardware for Parallel Processing.
[17] Michael Griebel,et al. A combination technique for the solution of sparse grid problems , 1990, Forschungsberichte, TU Munich.
[18] Josef Hoschek,et al. Grundlagen der geometrischen Datenverarbeitung (2. Aufl.) , 1992 .
[19] Hans-joachim Bungartz,et al. An adaptive poisson solver using hierarchical bases and sparse grids , 1991, Forschungsberichte, TU Munich.
[20] Hans-Joachim Bungartz,et al. Dünne Gitter und deren Anwendung bei der adaptiven Lösung der dreidimensionalen Poisson-Gleichung , 1992 .
[21] Michael Griebel,et al. The Combination Technique for the Sparse Grid Solution of PDE's on Multiprocessor Machines , 1992, Parallel Process. Lett..
[22] F. Girosi,et al. From regularization to radial, tensor and additive splines , 1993, Proceedings of 1993 International Conference on Neural Networks (IJCNN-93-Nagoya, Japan).
[23] T. Störtkuhl,et al. On the Parallel Solution of 3D PDEs on a Network of Workstations and on Vector Computers , 1993 .
[24] T. Störtkuhl,et al. On the Parallel Solution of 3D PDEs on a Network of Workstations and on Vector Computers , 1993, Parallel Computer Architectures.
[25] Brian D. Ripley,et al. Neural Networks and Related Methods for Classification , 1994 .
[26] U. Rüde,et al. Extrapolation, combination, and sparse grid techniques for elliptic boundary value problems , 1992, Forschungsberichte, TU Munich.
[27] Michael Griebel,et al. Multilevelmethoden als Iterationsverfahren über Erzeugendensystemen , 1994 .
[28] David J. Spiegelhalter,et al. Machine Learning, Neural and Statistical Classification , 2009 .
[29] Michael Griebel,et al. Tensor product type subspace splittings and multilevel iterative methods for anisotropic problems , 1995, Adv. Comput. Math..
[30] E. Arge,et al. Approximation of scattered data using smooth grid functions , 1995 .
[31] Michael Griebel,et al. The efficient solution of fluid dynamics problems by the combination technique , 1995, Forschungsberichte, TU Munich.
[32] Tomaso A. Poggio,et al. Regularization Theory and Neural Networks Architectures , 1995, Neural Computation.
[33] Karin Frank,et al. Information Complexity of Multivariate Fredholm Integral Equations in Sobolev Classes , 1996, J. Complex..
[34] H. Bungartz,et al. Sparse Grids: Recent Developments for Elliptic Partial Differential Equations , 1998 .
[35] Thomas G. Dietterich. Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms , 1998, Neural Computation.
[36] Paul S. Bradley,et al. Feature Selection via Concave Minimization and Support Vector Machines , 1998, ICML.
[37] Bernhard Schölkopf,et al. The connection between regularization operators and support vector kernels , 1998, Neural Networks.
[38] Sameer Singh,et al. 2D spiral pattern recognition with possibilistic measures , 1998, Pattern Recognit. Lett..
[39] Federico Girosi,et al. An Equivalence Between Sparse Approximation and Support Vector Machines , 1998, Neural Computation.
[40] Witold Pedrycz,et al. Data Mining Methods for Knowledge Discovery , 1998, IEEE Trans. Neural Networks.
[41] Catherine Blake,et al. UCI Repository of machine learning databases , 1998 .
[42] William D. Penny,et al. Bayesian neural networks for classification: how useful is the evidence framework? , 1999, Neural Networks.
[43] Aihui Zhou,et al. Error analysis of the combination technique , 1999, Numerische Mathematik.
[44] Hans-Joachim Bungartz,et al. A Note on the Complexity of Solving Poisson's Equation for Spaces of Bounded Mixed Derivatives , 1999, J. Complex..
[45] Tomaso Poggio,et al. A Unified Framework for Regularization Networks and Support Vector Machines , 1999 .
[46] W. Sickel,et al. Interpolation on Sparse Grids and Tensor Products of Nikol'skij–Besov Spaces , 1999 .
[47] Michael Griebel,et al. Sparse grids for boundary integral equations , 1999, Numerische Mathematik.
[48] Linda Kaufman,et al. Solving the quadratic programming problem arising in support vector classification , 1999 .
[49] David R. Musicant,et al. Active Support Vector Machine Classification , 2000, NIPS.
[50] Maxim A. Olshanskii,et al. On the Convergence of a Multigrid Method for Linear Reaction-Diffusion Problems , 2000, Computing.
[51] Glenn Fung,et al. Data selection for support vector machine classifiers , 2000, KDD '00.
[52] M. Griebel,et al. On the computation of the eigenproblems of hydrogen helium in strong magnetic and electric fields with the sparse grid combination technique , 2000 .
[53] Vladimir N. Vapnik,et al. The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.
[54] K. Stuben,et al. Algebraic Multigrid (AMG) : An Introduction With Applications , 2000 .
[55] Tomaso A. Poggio,et al. Regularization Networks and Support Vector Machines , 2000, Adv. Comput. Math..
[56] M. Griebel,et al. Optimized Tensor-Product Approximation Spaces , 2000 .
[57] Eric R. Ziegel,et al. Mastering Data Mining , 2001, Technometrics.
[58] David R. Musicant,et al. Lagrangian Support Vector Machines , 2001, J. Mach. Learn. Res..
[59] Michael Griebel,et al. Data mining with sparse grids using simplicial basis functions , 2001, KDD '01.
[60] Yuh-Jye Lee,et al. SSVM: A Smooth Support Vector Machine for Classification , 2001, Comput. Optim. Appl..
[61] Michael Griebel,et al. On the Parallelization of the Sparse Grid Approach for Data Mining , 2001, LSSC.
[62] Robert A. Lordo,et al. Learning from Data: Concepts, Theory, and Methods , 2001, Technometrics.