Novel Graph-based Adaptive Triangular Mesh Refinementfor Finite-volume Discretizations
暂无分享,去创建一个
João Manuel R. S. Tavares | Sanderson L. Gonzaga de Oliveira | Mauricio Kischinhevsky | J. Tavares | M. Kischinhevsky | S. L. G. D. Oliveira
[1] Bruce G. Baumgart. A polyhedron representation for computer vision , 1975, AFIPS '75.
[2] David E. Muller,et al. Finding the Intersection of two Convex Polyhedra , 1978, Theor. Comput. Sci..
[3] Joshua Kiddy K. Asamoah,et al. Fractal–fractional age-structure study of omicron SARS-CoV-2 variant transmission dynamics , 2022, Partial Differential Equations in Applied Mathematics.
[4] M. Rivara. Algorithms for refining triangular grids suitable for adaptive and multigrid techniques , 1984 .
[5] Martti Mäntylä,et al. Introduction to Solid Modeling , 1988 .
[6] Carlo Cattani,et al. Dimension-independent modeling with simplicial complexes , 1993, TOGS.
[7] Hans-Peter Seidel,et al. Directed Edges - A Scalable Representation for Triangle Meshes , 1998, J. Graphics, GPU, & Game Tools.
[8] Luiz Velho,et al. Hierarchical generalized triangle strips , 1999, The Visual Computer.
[9] Leila De Floriani,et al. A multi-resolution topological representation for non-manifold meshes , 2002, SMA '02.
[10] Leif Kobbelt,et al. OpenMesh: A Generic and Efficient Polygon Mesh Data Structure , 2002 .
[11] Leila De Floriani,et al. Data structures for simplicial complexes: an analysis and a comparison , 2005, SGP '05.
[12] Steven Skiena,et al. Hamiltonian triangulations for fast rendering , 1996, The Visual Computer.
[13] L. Kobbelt,et al. A Survey on Data Structures for Level-of-Detail Models , 2005, Advances in Multiresolution for Geometric Modelling.
[14] Denise Burgarelli,et al. A new adaptive mesh refinement strategy for numerically solving evolutionary PDE's , 2006 .
[15] Sanderson L. Gonzaga de Oliveira,et al. Sierpinski curve for total ordering of a graph-based adaptive simplicial-mesh refinement for Finite Volume discretizations , 2008 .
[16] Michael Bader,et al. Memory efficient adaptive mesh generation and implementation of multigrid algorithms using Sierpinski curves , 2008, Int. J. Comput. Sci. Eng..
[17] M. Kischinhevsky,et al. A Graph-based adaptive triangular-mesh refinement applied to classical elliptical and parabolical problems , 2009 .
[18] Johannes Schwaiger,et al. Dynamically Adaptive Simulations with Minimal Memory Requirement---Solving the Shallow Water Equations Using Sierpinski Curves , 2010, SIAM J. Sci. Comput..
[19] Yufeng Nie,et al. Parallel Node-based Local Tetrahedral Mesh Generation , 2012 .
[20] Christopher C. Pain,et al. Minimising the error in eigenvalue calculations involving the Boltzmann transport equation using goal-based adaptivity on unstructured meshes , 2013, J. Comput. Phys..
[21] Christopher C. Pain,et al. Goal based mesh adaptivity for fixed source radiation transport calculations , 2013 .