Subcortical Discrimination of Unperceived Objects during Binocular Rivalry

Rapid identification of behaviorally relevant objects is important for survival. In humans, the neural computations for visually discriminating complex objects involve inferior temporal cortex (IT). However, less detailed but faster form processing may also occur in a phylogenetically older subcortical visual system that terminates in the amygdala. We used binocular rivalry to present stimuli without conscious awareness, thereby eliminating the IT object representation and isolating subcortical visual input to the amygdala. Functional magnetic resonance imaging revealed significant brain activation in the left amygdala but not in object-selective IT in response to unperceived fearful faces compared to unperceived nonface objects. These findings indicate that, for certain behaviorally relevant stimuli, a high-level cortical representation in IT is not required for object discrimination in the amygdala.

[1]  D B Lindsley,et al.  Effect of pulvinar lesions on visual pattern discrimination in monkeys. , 1976, Journal of neurophysiology.

[2]  M. Yukie,et al.  Amygdalofugal and amygdalopetal connections with modality‐specific visual cortical areas in macaques (macaca fuscata, M. mulatta, and M. fascicularis) , 1987, The Journal of comparative neurology.

[3]  S. Engel,et al.  Interocular rivalry revealed in the human cortical blind-spot representation , 2001, Nature.

[4]  R. Dolan,et al.  Distinct spatial frequency sensitivities for processing faces and emotional expressions , 2003, Nature Neuroscience.

[5]  A. Mikami,et al.  Activity of single neurons in the monkey amygdala during performance of a visual discrimination task. , 1992, Journal of neurophysiology.

[6]  D. Amaral,et al.  Topographic organization of cortical inputs to the lateral nucleus of the macaque monkey amygdala: A retrograde tracing study , 2000, The Journal of comparative neurology.

[7]  L. Benevento,et al.  The ascending projections of the superior colliculus in the rhesus monkey (Macaca mulatta) , 1975, The Journal of comparative neurology.

[8]  Karl J. Friston,et al.  Psychophysiological and Modulatory Interactions in Neuroimaging , 1997, NeuroImage.

[9]  Nancy Kanwisher,et al.  A cortical representation of the local visual environment , 1998, Nature.

[10]  J. A. Pruszynski,et al.  Neural correlates , 2023 .

[11]  H. Pape,et al.  Direct synaptic connections of axons from superior colliculus with identified thalamo‐amygdaloid projection neurons in the rat: Possible substrates of a subcortical visual pathway to the amygdala , 1999, The Journal of comparative neurology.

[12]  M. Tovée,et al.  The responses of neurons in the temporal cortex of primates, and face identification and detection , 1994, Experimental Brain Research.

[13]  N. Kanwisher,et al.  The Parahippocampal Place Area: A Cortical Representation of the Local Visual Environment , 1998, NeuroImage.

[14]  D. Amaral,et al.  Some observations on cortical inputs to the macaque monkey amygdala: An anterograde tracing study , 2002, The Journal of comparative neurology.

[15]  R. Blake,et al.  Binocular rivalry and semantic processing: out of sight, out of mind. , 1983, Journal of experimental psychology. Human perception and performance.

[16]  C. B. Cave,et al.  Binocular Rivalry Disrupts Visual Priming , 1998 .

[17]  P. Schiller,et al.  Properties and tectal projections of monkey retinal ganglion cells. , 1977, Journal of neurophysiology.

[18]  T. Allison,et al.  Electrophysiological studies of human face perception. I: Potentials generated in occipitotemporal cortex by face and non-face stimuli. , 1999, Cerebral cortex.

[19]  E. G. Jones,et al.  A projection from the medial pulvinar to the amygdala in primates , 1976, Brain Research.

[20]  J. Kaas,et al.  Projections of the superior colliculus to subdivisions of the inferior pulvinar in New World and Old World monkeys , 2000, Visual Neuroscience.

[21]  Marian Stamp Dawkins,et al.  Pattern recognition and active vision in chickens , 2000, Nature.

[22]  Frank Tong,et al.  Competing Theories of Binocular Rivalry: A Possible Resolution , 2001 .

[23]  S. Edelman,et al.  Differential Processing of Objects under Various Viewing Conditions in the Human Lateral Occipital Complex , 1999, Neuron.

[24]  G Kovács,et al.  Cortical correlate of pattern backward masking. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[25]  C. C. Goren,et al.  Visual following and pattern discrimination of face-like stimuli by newborn infants. , 1975, Pediatrics.

[26]  Garrison W. Cottrell,et al.  Organization of face and object recognition in modular neural network models , 1999, Neural Networks.

[27]  Leslie G. Ungerleider,et al.  Neural processing of emotional faces requires attention , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[28]  N. Logothetis,et al.  Visual competition , 2002, Nature Reviews Neuroscience.

[29]  P Pasik,et al.  Extrageniculostriate vision in the monkey. VII. Contrast sensitivity functions. , 1980, Journal of neurophysiology.

[30]  N. Logothetis,et al.  Activity changes in early visual cortex reflect monkeys' percepts during binocular rivalry , 1996, Nature.

[31]  Leslie G. Ungerleider,et al.  Connections of inferior temporal areas TE and TEO with medial temporal- lobe structures in infant and adult monkeys , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  R. Blake © 2001 Kluwer Academic Publishers. Printed in the Netherlands. 5 A Primer on Binocular Rivalry, Including Current Controversies , 2000 .

[33]  N. Logothetis The Underpinnings of the BOLD Functional Magnetic Resonance Imaging Signal , 2003, The Journal of Neuroscience.

[34]  S. Lomber Learning to see the trees before the forest: Reversible deactivation of the superior colliculus during learning of local and global visual features , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Joseph E LeDoux The Emotional Brain: The Mysterious Underpinnings of Emotional Life , 1996 .

[36]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[37]  A. Oliva,et al.  Dr. Angry and Mr. Smile: when categorization flexibly modifies the perception of faces in rapid visual presentations , 1999, Cognition.

[38]  R. Dolan,et al.  Conscious and unconscious emotional learning in the human amygdala , 1998, Nature.

[39]  Christof Koch,et al.  Single-neuron correlates of subjective vision in the human medial temporal lobe , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[40]  A. Young,et al.  Neuropsychology of fear and loathing , 2001 .

[41]  R. Blake A Neural Theory of Binocular Rivalry , 1989 .

[42]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[43]  M G Rosa,et al.  Topography and extent of visual-field representation in the superior colliculus of the megachiropteran Pteropus , 1994, Visual Neuroscience.

[44]  A. Dale,et al.  Functional-Anatomic Correlates of Object Priming in Humans Revealed by Rapid Presentation Event-Related fMRI , 1998, Neuron.

[45]  Mark H. Johnson,et al.  CONSPEC and CONLERN: a two-process theory of infant face recognition. , 1991, Psychological review.

[46]  Lack of short-latency-potentials in the VEP reflects immature extra geniculate visual function in delayed visual maturation (DVM) , 2004, Documenta Ophthalmologica.

[47]  C Umiltà,et al.  Preferential orienting to faces in newborns: a temporal-nasal asymmetry. , 1998, Journal of experimental psychology. Human perception and performance.

[48]  T. V. Sewards,et al.  Innate visual object recognition in vertebrates: some proposed pathways and mechanisms. , 2002, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[49]  K. Nakayama,et al.  Binocular Rivalry and Visual Awareness in Human Extrastriate Cortex , 1998, Neuron.

[50]  J. Gallant The Neural Representation of Shape , 2000 .

[51]  R. Henson,et al.  Neural response suppression, haemodynamic repetition effects, and behavioural priming , 2003, Neuropsychologia.

[52]  M. Tovée,et al.  Processing speed in the cerebral cortex and the neurophysiology of visual masking , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[53]  Rainer Goebel,et al.  Sustained extrastriate cortical activation without visual awareness revealed by fMRI studies of hemianopic patients , 2001, Vision Research.

[54]  David L. Sheinberg,et al.  The role of temporal cortical areas in perceptual organization. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[55]  I. Biederman,et al.  Localizing the cortical region mediating visual awareness of object identity. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Joseph E LeDoux The emotional brain , 1996 .

[57]  Leslie G. Ungerleider,et al.  Distributed representation of objects in the human ventral visual pathway. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[58]  R. Dolan,et al.  A subcortical pathway to the right amygdala mediating "unseen" fear. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[59]  D. Schacter,et al.  Perceptual specificity in visual object priming: functional magnetic resonance imaging evidence for a laterality difference in fusiform cortex , 2001, Neuropsychologia.

[60]  E. Rolls,et al.  The Neurophysiology of Backward Visual Masking: Information Analysis , 1999, Journal of Cognitive Neuroscience.

[61]  I. Biederman,et al.  Subliminal visual priming , 1997, Neuroscience Letters.

[62]  G. Rees,et al.  Covariation of activity in visual and prefrontal cortex associated with subjective visual perception. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[63]  J B Poline,et al.  Cerebral mechanisms of word masking and unconscious repetition priming , 2001, Nature Neuroscience.

[64]  Geraint Rees,et al.  Consciousness lost and found , 1997 .

[65]  L. Weiskrantz,et al.  Differential extrageniculostriate and amygdala responses to presentation of emotional faces in a cortically blind field. , 2001, Brain : a journal of neurology.

[66]  G. Rees,et al.  Neural correlates of perceptual rivalry in the human brain. , 1998, Science.

[67]  D. Heeger,et al.  Linear Systems Analysis of Functional Magnetic Resonance Imaging in Human V1 , 1996, The Journal of Neuroscience.

[68]  S. Rauch,et al.  Masked Presentations of Emotional Facial Expressions Modulate Amygdala Activity without Explicit Knowledge , 1998, The Journal of Neuroscience.

[69]  Leslie G. Ungerleider,et al.  Attentional control of the processing of neural and emotional stimuli. , 2002, Brain research. Cognitive brain research.

[70]  P S Goldman-Rakic,et al.  Topographic organization of medial pulvinar connections with the prefrontal cortex in the rhesus monkey , 1997, The Journal of comparative neurology.