Gasochromic effect and relative mechanism of WO3 nanowire films

WO3 nanowire films have been prepared by thermal evaporation on both a silicon substrate and a quartz substrate. The gasochromic effect and the colouration mechanism of the films are investigated in detail by ultraviolet–visible–near infrared (UV–vis–NIR) spectroscopy, x-ray diffraction (XRD) spectroscopy, micro-Raman spectroscopy, x-ray photoelectron spectroscopy (XPS) and electrical transport measurements. The studies reveal that the gasochromism of WO3 nanowire films is caused by hydrogen injection. Along with the injection, a part of the tungsten ions' valences and the lattice structure change, giving rise to the colouration of the films. Moreover, electrical transport measurements show the lower conductance of the coloured film, which further confirms the hydrogen injection mechanism. Finally, a gasochromic model of the WO3 nanowire films is proposed.

[1]  N. Xu,et al.  Raman spectroscopic study of oxidation and phase transition in W18O49 nanowires , 2007 .

[2]  Wolfgang Graf,et al.  Switchable glazing with a large dynamic range in total solar energy transmittance (TSET) , 1998 .

[3]  M. Wuttig,et al.  Gasochromic switching of tungsten oxide films: a correlation between film properties and coloration kinetics , 2002 .

[4]  Boris Orel,et al.  Structural, Vibrational, and Gasochromic Properties of Porous WO3 Films Templated with a Sol-Gel Organic–Inorganic Hybrid , 2002 .

[5]  Seung Il Cho,et al.  Nanotube‐Based Ultrafast Electrochromic Display , 2005 .

[6]  J. E. Benson,et al.  On the reduction of tungsten trioxide accelerated by platinum and water , 1966 .

[7]  N. Xu,et al.  Synthesis and field-emission properties of aligned MoO3 nanowires , 2003 .

[8]  M. Stolze,et al.  Nature of substoichiometry in reactively DC-sputtered tungsten oxide thin films and its effect on the maximum obtainable colouration by gases , 2002 .

[9]  R. M. Lec,et al.  Electrical properties of tungsten trioxide films , 1990 .

[10]  Claudio Vinegoni,et al.  Raman study of the phase transitions sequence in pure WO3 at high temperature and in HxWO3 with variable hydrogen content , 1999 .

[11]  Hui Shen,et al.  A study on the gasochromic properties of WO3 thin films , 2003 .

[12]  G. Adachi,et al.  Colouring of amorphous WO3 with hydrogen penetrated through an LaNi5 thin film , 1986 .

[13]  Wolfgang Graf,et al.  Examination of the kinetics and performance of a catalytically switching (gasochromic) device , 1998 .

[14]  Yuichi Watanabe,et al.  Preparation and characterization of an optically detectable H2 gas sensor consisting of Pd/MoO3 thin films , 1993 .

[15]  Wolfgang Graf,et al.  The gasochromic colouration of sputtered WO3 films with a low water content , 2001 .

[16]  Kentaro Ito,et al.  Hydrogen detection based on coloration of anodic tungsten oxide film , 1992 .

[17]  V. Wittwer,et al.  Dependence of WO 3 Electrochromic Absorption on Crystallinity , 1977 .

[18]  X. Xu,et al.  Gasochromic effect of sol–gel WO3–SiO2 films with evaporated platinum catalyst , 2002 .

[19]  C. Ziebert,et al.  Gasochromic tungsten oxide‐based film structures , 2005 .

[20]  Wolfgang Graf,et al.  Mechanism of the gasochromic coloration of porous WO3 films , 2000 .

[21]  G. Cao,et al.  Growth and electrochromic properties of single-crystal V2O5 nanorod arrays , 2005 .

[22]  P. Shaver ACTIVATED TUNGSTEN OXIDE GAS DETECTORS , 1967 .

[23]  Yong Ding,et al.  Three‐Dimensional Tungsten Oxide Nanowire Networks , 2005 .

[24]  Satyen K. Deb,et al.  Influence of microstructure on the chemical diffusion of lithium ions in amorphous lithiated tungsten oxide films , 2001 .

[25]  Jun Chen,et al.  Large‐Area Nanowire Arrays of Molybdenum and Molybdenum Oxides: Synthesis and Field Emission Properties , 2003 .

[26]  N. Xu,et al.  Raman study of thermochromic phase transition in tungsten trioxide nanowires , 2007 .

[27]  C. E. Tracy,et al.  Raman spectroscopic studies of gasochromic a-WO3 thin films , 2001 .

[28]  Claes-Göran Granqvist,et al.  Electrochromic tungsten oxide films: Review of progress 1993–1998 , 2000 .

[29]  C. Ziebert,et al.  Effect of Pt-catalyst on gasochromic WO3 films: optical, electrical and AFM investigations , 2004 .

[30]  Renata Reisfeld,et al.  Gasochromic effect of palladium doped peroxopolytungstic acid films prepared by the sol-gel route , 1998 .

[31]  J. E. Benson,et al.  Adlineation, Portholes and Spillover , 1969 .

[32]  E. Wang,et al.  Nanocrystalline tungsten oxide thin film: Preparation, microstructure, and photochromic behavior , 2000 .

[33]  Volker Wittwer,et al.  The gasochromic properties of sol–gel WO3 films with sputtered Pt catalyst , 2000 .

[34]  M. Miyauchi,et al.  Electrochromism of titanate-based nanotubes. , 2005, Angewandte Chemie.

[35]  V. Vitry,et al.  Preparation and characterization of gasochromic thin films , 2006 .

[36]  P. Bouvier,et al.  High-pressure Raman study of microcrystalline WO3 tungsten oxide , 2002 .

[37]  Wolfgang Graf,et al.  Stability of gasochromic WO3 films , 2000 .

[38]  M. Kosec,et al.  Gasochromic Behavior of Sol-Gel Derived Pd Doped Peroxopolytungstic Acid (W-PTA) Nano-Composite Films , 1999 .

[39]  Renata Reisfeld,et al.  Gasochromic Effect in Platinum-Doped Tungsten Trioxide Films Prepared by the Sol-Gel Method , 1998 .