Perfect matchings in lattice animals and lattice paths with constraints

In the first part of this paper it is shown how to use ear decomposition techniques in proving existence and establishing lower bounds to the number of perfect matchings in lattice animals. A correspondence is then established between perfect matchings in certain classes of benzenoid graphs and paths in the rectangular lattice that satisfy certain diagonal constraints. This correspondence is used to give explicit formulas for the number of perfect matchings in hexagonal benzenoid graphs and to derive some identities involving Fibonacci numbers and binomial coefficients. Some of the results about benzenoid graphs are also translated into the context of polyominoes.