Cooking cellulose in hot and compressed water.

Crystalline-to-amorphous transformation of cellulose in water, just like that for starch upon cooking called gelatinisation, is revealed at 320 degrees C and 25 MPa.

[1]  D. Klemm,et al.  Cellulose: fascinating biopolymer and sustainable raw material. , 2005, Angewandte Chemie.

[2]  D. Lineback,et al.  The terminology and methodology associated with basic starch phenomena , 1988 .

[3]  M. Sasaki,et al.  Kinetics of cellulose conversion at 25 MPa in sub‐ and supercritical water , 2004 .

[4]  Kunio Arai,et al.  Dissolution and Hydrolysis of Cellulose in Subcritical and Supercritical Water , 2000 .

[5]  K. Arai,et al.  Noncatalytic Conversion of Cellulose in Supercritical and Subcritical Water , 1993 .

[6]  Hiroyuki Yamamoto,et al.  Structural changes of native cellulose crystals induced by annealing in aqueous alkaline and acidic solutions at high temperatures , 1989 .

[7]  J. Garcia-Guinea,et al.  Cell-Hosted Pyrite Framboids in Fossil Woods , 1998, Naturwissenschaften.

[8]  Kunio Arai,et al.  Cellulose hydrolysis in subcritical and supercritical water , 1998 .

[9]  T. Higuchi,et al.  Transformation of native cellulose crystals induced by saturated steam at high temperatures , 1987 .

[10]  A. Geiger,et al.  Water in nanopores. I. Coexistence curves from Gibbs ensemble Monte Carlo simulations. , 2004, The Journal of chemical physics.

[11]  Paul Langan,et al.  Crystal structure and hydrogen-bonding system in cellulose Ibeta from synchrotron X-ray and neutron fiber diffraction. , 2002, Journal of the American Chemical Society.

[12]  N. Matubayasi,et al.  NMR Study of Water Structure in Super- and Subcritical Conditions , 1997 .

[13]  K. Tsujii,et al.  Flow cell for in situ optical microscopy in water at high temperatures and pressures up to supercritical state , 2002 .