A GAP Package for Braid Orbit Computation and Applications

Let G be a finite group. By Riemann's Existence Theorem, braid orbits of generating systems of G with product 1 correspond to irreducible families of covers of the Riemann sphere with monodromy group G. Thus, many problems on algebraic curves require the computation of braid orbits. In this paper, we describe an implementation of this computation. We discuss several applications, including the classification of irreducible familiesof indecomposable rational functions with exceptional monodromy group.

[1]  M. Fried,et al.  Integral specialization of families of rational functions , 1999 .

[2]  Robert I. Soare,et al.  Extension of embeddings in the computably enumerable degrees , 2001 .

[3]  M. Fried,et al.  The inverse Galois problem and rational points on moduli spaces , 1991 .

[4]  Daniel Frohardt,et al.  Composition factors of monodromy groups , 2001 .

[5]  Acuerdo Para Entrevistanarrador Oh! , 1908 .

[6]  H. Völklein Groups as Galois groups : an introduction , 1996 .

[7]  T. Breuer Characters and Automorphism Groups of Compact Riemann Surfaces , 2000 .

[8]  Gunter Malle,et al.  Inverse Galois Theory , 2002 .

[9]  K. Magaard,et al.  The monodromy group of a function on a general curve , 2003, math/0304130.

[10]  Kay Magaard,et al.  On the Minimal Degree of a Primitive Permutation Group , 1998 .

[11]  M. Fried,et al.  Spin separation and higher levels of a Modular Tower , 2001, math/0104289.

[12]  S. Shpectorov,et al.  The locus of curves with prescribed automorphism group (Communications in Arithmetic Fundamental Groups) , 2002, math/0205314.

[13]  Louis Granboulan,et al.  Construction d'une extension régulière de Q(T) de groupe de Galois M24 , 1996, Exp. Math..

[14]  Gunter Malle,et al.  Multi-parameter Polynomials with Given Galois Group , 2000, J. Symb. Comput..

[15]  H. Völklein Moduli spaces for covers of the Riemann sphere , 1994 .

[16]  Symplectic groups as Galois groups , 1998 .

[17]  Michael G. Neubauer On monodromy groups of fixed genus , 1992 .

[18]  Michael G. Neubauer On primitive monodromy groups of genus zero and one 1 , 1993 .