Zirconium enolatoimine complexes in olefin polymerization.

Zirconium complexes with enolatoimine ligands bearing an electron-withdrawing trifluoromethyl group on the alkoxy moiety [κ²-N,O-{2,6-R₂N=C(CH₃)C(H)=C(O)CF₃]₂ZrCl₂ (2a, R = H; 2b, R = F; 2c, R = CH₃; 2d, R = (i)Pr) were prepared. The isopropyl substituents hinder rotation in solution for 2d, and result in a trans-arrangement of the N-donors in the solid state. Catalyst activities are similar for 2a/MAO and 2b/MAO in ethylene polymerization (1.8 × 10⁵ TO h⁻¹ for 2a and 3.3 × 10⁵ TO h⁻¹ for 2b at 25 °C under 1 bar monomer pressure), increasingly bulky alkyl substituents result in strongly decreased polymerization activities (7.1 × 10² TO h⁻¹ for 2c and 5.7 × 10² TO h⁻¹ for 2d at 25 °C). This goes along with an increase in polymer molecular weight (M(w) = 8.1 × 10³, M(w)/M(n) = 2.9 for 2a, M(w) = 3.8 × 10⁵, M(w)/M(n) = 2.0 for 2b, M(w) = 1.0 × 10⁶, M(w)/M(n) = 2.8 for 2c), apparently bulky substituents retard chain transfer even more strongly than activation of the precursors and/or chain growth. 2b/MAO affords atactic polypropylene (M(w) = 1.4 × 10⁴ g mol⁻¹, M(w)/M(n) = 2.1) with a small portion of regioirregular structures. The reaction of [Zr(CH₂Ph)₄] with the ketoenamine 2,6-F₂C₆H₃N(H)-CMe=CHC(O)CF₃ (1b) yielded the dibenzyl complex [(o-F₂C₆H₃N=CMeCH=C(CF₃)O)₂Zr-(CH₂Ph)₂] (3b) which was investigated as a catalyst precursor for ethylene homopolymerization in combination with different activators.

[1]  G. Jin,et al.  Syntheses, characterization, and ethylene polymerization of titanium and zirconium complexes with [N, O] ligands. , 2009, Dalton transactions.

[2]  T. Fujita,et al.  Development and application of FI catalysts for olefin polymerization: unique catalysis and distinctive polymer formation. , 2009, Accounts of chemical research.

[3]  Yue-sheng Li,et al.  Living Copolymerization of Ethylene with Dicyclopentadiene Using Titanium Catalyst: Formation of Well-Defined Polyethylene-block-poly(ethylene-co-dicyclopentadiene)s and Their Transformation into Novel Polyolefin-block-(functional polyolefin)s , 2009 .

[4]  R. Fröhlich,et al.  Bis("ferrocene-saliminato") group 4 metal complexes: synthesis, structural features and use in homogenous Ziegler-Natta polymerization catalysis. , 2009, Dalton transactions.

[5]  S. Mecking,et al.  Variable Crystallinity Polyethylene Nanoparticles , 2009 .

[6]  G. Jin,et al.  Half-sandwich chromium(III) complexes bearing beta-ketoiminato and beta-diketiminate ligands as catalysts for ethylene polymerization. , 2009, Dalton transactions.

[7]  T. Roisnel,et al.  Group 4 Metal Complexes of Fluorous (Di)Alkoxide-(Di)Imino Ligands: Synthesis, Structure, Olefin Polymerization Catalysis, and Decomposition Pathways , 2009 .

[8]  S. Mecking,et al.  Extremely narrow-dispersed high molecular weight polyethylene from living polymerization at elevated temperatures with o-F substituted Ti enolatoimines. , 2008, Journal of the American Chemical Society.

[9]  Yue-sheng Li,et al.  Synthesis and Characterization of Titanium Complexes Bearing Two β-Enaminoketonato Ligands with Electron-Withdrawing Groups and Their Behavior in Ethylene Polymerization , 2008 .

[10]  S. Mecking,et al.  Coordination copolymerization of polar vinyl monomers H2C=CHX. , 2008, Angewandte Chemie.

[11]  A. Chiche,et al.  Single lamella nanoparticles of polyethylene. , 2007, Nano letters.

[12]  S. Mecking,et al.  Synthesis of Aqueous Polyethylene Dispersions with Electron-Deficient Neutral Nickel(II) Catalysts with Enolatoimine Ligands , 2007 .

[13]  G. Coates,et al.  Living alkene polymerization : New methods for the precision synthesis of polyolefins , 2007 .

[14]  S. Mecking,et al.  Water-soluble salicylaldiminato Ni(II)-methyl complexes: enhanced dissociative activation for ethylene polymerization with unprecedented nanoparticle formation. , 2006, Journal of the American Chemical Society.

[15]  P. White,et al.  Synthesis, Characterization, and Ethylene Polymerization Activities of Neutral Nickel(II) Complexes Derived from Anilino-Substituted Enone Ligands Bearing Trifluoromethyl and Trifluoroacetyl Substituents , 2006 .

[16]  Zhicheng Zhang,et al.  A series of new zirconium complexes bearing bis(phenoxyketimine) ligands: Synthesis, characterization and ethylene polymerization , 2005 .

[17]  Li-Ming Tang,et al.  Titanium complexes bearing aromatic-substituted β-enaminoketonato ligands: Syntheses, structure and olefin polymerization behavior , 2005 .

[18]  L. Toupet,et al.  C2-symmetric fluorous diamino-dialkoxide complexes of early transition metals , 2004 .

[19]  Yue-sheng Li,et al.  New Titanium Complexes with Two β-Enaminoketonato Chelate Ligands: Syntheses, Structures, and Olefin Polymerization Activities , 2004 .

[20]  G. Coates,et al.  Titanium Catalysts with Ancillary Phenoxyketimine Ligands for Living Ethylene Polymerization , 2003 .

[21]  M. Mitani,et al.  Ethylene and Ethylene/Propylene Polymerization Behavior of Bis(phenoxy‐imine) Zr and Hf Complexes with Perfluorophenyl Substituents , 2003 .

[22]  H. Terao,et al.  Syndiospecific living propylene polymerization catalyzed by titanium complexes having fluorine-containing phenoxy-imine chelate ligands. , 2003, Journal of the American Chemical Society.

[23]  R. Mülhaupt Catalytic polymerization and post polymerization catalysis fifty years after the discovery of Ziegler's catalysts , 2003 .

[24]  V. C. Gibson,et al.  Advances in non-metallocene olefin polymerization catalysis. , 2003, Chemical reviews.

[25]  G. Coates,et al.  Catalysts for the living insertion polymerization of alkenes: access to new polyolefin architectures using Ziegler-Natta chemistry. , 2002, Angewandte Chemie.

[26]  N. Kashiwa,et al.  FI Catalysts: A New Family of High Performance Catalysts for Olefin Polymerization , 2002 .

[27]  Y. Inoue,et al.  New Titanium Complexes Bearing Two Indolide-Imine Chelate Ligands for the Polymerization of Ethylene , 2002 .

[28]  T. Nakano,et al.  Living polymerization of ethylene catalyzed by titanium complexes having fluorine-containing phenoxy-imine chelate ligands. , 2002, Journal of the American Chemical Society.

[29]  N. Kashiwa,et al.  Highly active ethylene polymerization catalysts based on titanium complexes having two phenoxy-imine chelate ligands , 2002 .

[30]  T. Nakano,et al.  Microstructure of Highly Syndiotactic “Living” Poly(propylene)s Produced from a Titanium Complex with Chelating Fluorine-Containing Phenoxyimine Ligands (an FI Catalyst) , 2001 .

[31]  N. Kashiwa,et al.  Living Polymerization of Ethylene with a Titanium Complex Containing Two Phenoxy-Imine Chelate Ligands. , 2001, Angewandte Chemie.

[32]  T. Nakano,et al.  A Family of Zirconium Complexes Having Two Phenoxy−Imine Chelate Ligands for Olefin Polymerization , 2001 .

[33]  M. H. Lee,et al.  Synthesis, structure and ethylene polymerization behavior of zirconium complexes with chelating ketoiminate ligands , 2001 .

[34]  S. Mecking Olefin Polymerization by Late Transition Metal Complexes-A Root of Ziegler Catalysts Gains New Ground. , 2001, Angewandte Chemie.

[35]  T. Nakano,et al.  Post-Metallocenes: Catalytic Perfomance of New Bis(salicylaldiminato) Zirconium Complexes for Ethylene Polymerization , 2000 .

[36]  M. Brookhart,et al.  Late-metal catalysts for ethylene homo- and copolymerization. , 2000, Chemical reviews.

[37]  J. H. Teuben,et al.  The N,N '-bis(trimethylsilyl)pentafluorobenzamidinate ligand : enhanced ethene oligomerisation with a neutral V(III) bis(benzamidinate) alkyl catalyst , 2000 .

[38]  M. Mitani,et al.  Post-Metallocenes: A New Bis(salicylaldiminato) Zirconium Complex for Ethylene Polymerization , 1999 .

[39]  G. Britovsek,et al.  The Search for New-Generation Olefin Polymerization Catalysts: Life beyond Metallocenes. , 1999, Angewandte Chemie.

[40]  K. Cavell,et al.  Zirconium complexes as catalysts for the oligomerisation of ethylene: the role of chelate ligands and the Lewis acid cocatalyst in the generation of the active species , 1999 .

[41]  K. Cavell,et al.  Synthesis of new adducts and co-ordination complexes of zirconium and titanium containing β-aminoketone ligands. Crystal structures of isostructural adducts MCl4·2PriHNCMeCHCMeO (M = Ti or Zr) and the complex [Zr(PhNCMeCHCMeO)2Cl2] , 1998 .

[42]  D. Swenson,et al.  Synthesis, Structures, Bonding, and Ethylene Reactivity of Group 4 Metal Alkyl Complexes Incorporating 8-Quinolinolato Ligands , 1997 .

[43]  David Fischer,et al.  Stereospecific Olefin Polymerization with Chiral Metallocene Catalysts , 1995 .

[44]  M. Hursthouse,et al.  Synthesis of Base-Free Cationic Zirconium Methyl and Benzyl Complexes. The Crystal and Molecular Structure of {C5H3(SiMe3)2-1,3}2ZrMe(.mu.-Me)B(C6F5)3 , 1994 .

[45]  M. Bochmann,et al.  Base-free cationic zirconium benzyl complexes as highly active polymerization catalysts , 1993 .

[46]  N. Baenziger,et al.  Synthesis and structures of neutral and cationic rac-(ethylenebis(tetrahydroindenyl))zirconium(IV) benzyl complexes , 1990 .

[47]  R. Willett,et al.  Chemistry of cationic zirconium(IV) benzyl complexes. One-electron oxidation of d0 organometallics , 1987 .

[48]  H. N. Cheng 13C-NMR determination of inverted propylene units in polypropylene , 1985, Polymer Bulletin.

[49]  I. P. Rothwell,et al.  The chemistry of sterically crowded aryl oxide ligands. III: Crystal and molecular structure and spectroscopic properties of mixed benzyl-aryl oxide compounds of zirconium , 1985 .