Cell-specific proteome analyses of human bone marrow reveal molecular features of age-dependent functional decline

[1]  S. Méndez-Ferrer,et al.  Microenvironmental contributions to hematopoietic stem cell aging , 2019, Haematologica.

[2]  Angus I. Lamond,et al.  Multibatch TMT Reveals False Positives, Batch Effects and Missing Values* , 2019, Molecular & Cellular Proteomics.

[3]  Lars Velten,et al.  Large-Scale Low-Cost NGS Library Preparation Using a Robust Tn5 Purification and Tagmentation Protocol , 2017, G3: Genes, Genomes, Genetics.

[4]  T. Luis,et al.  The evolving view of the hematopoietic stem cell niche. , 2017, Experimental hematology.

[5]  L. Steinmetz,et al.  Human haematopoietic stem cell lineage commitment is a continuous process , 2017, Nature Cell Biology.

[6]  Geet Duggal,et al.  Salmon: fast and bias-aware quantification of transcript expression using dual-phase inference , 2017, Nature Methods.

[7]  Damian Szklarczyk,et al.  The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible , 2016, Nucleic Acids Res..

[8]  Christian M. Metallo,et al.  ATP-Citrate Lyase Controls a Glucose-to-Acetate Metabolic Switch. , 2016, Cell reports.

[9]  H. Land,et al.  Addiction to Coupling of the Warburg Effect with Glutamine Catabolism in Cancer Cells , 2016, Cell reports.

[10]  John C Marioni,et al.  A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor , 2016, F1000Research.

[11]  Judith B. Zaugg,et al.  Data-driven hypothesis weighting increases detection power in genome-scale multiple testing , 2016, Nature Methods.

[12]  I. Macaulay,et al.  Single-cell RNA sequencing reveals molecular and functional platelet bias of aged haematopoietic stem cells , 2016, Nature Communications.

[13]  G. Vartholomatos,et al.  On the potential role of DNMT1 in acute myeloid leukemia and myelodysplastic syndromes: not another mutated epigenetic driver , 2016, Annals of Hematology.

[14]  Peer Bork,et al.  Spatiotemporal variation of mammalian protein complex stoichiometries , 2016, Genome Biology.

[15]  K. Ley,et al.  Integrin-based therapeutics : biological basis , clinical use and new drugs , 2016 .

[16]  K. Vousden,et al.  Serine Metabolism Supports the Methionine Cycle and DNA/RNA Methylation through De Novo ATP Synthesis in Cancer Cells , 2016, Molecular cell.

[17]  N. Odo,et al.  Nitric Oxide-cGMP Signaling Stimulates Erythropoiesis through Multiple Lineage-Specific Transcription Factors: Clinical Implications and a Novel Target for Erythropoiesis , 2016, PloS one.

[18]  M. Robinson,et al.  Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. , 2015, F1000Research.

[19]  T. Finkel,et al.  The metabolic regulation of aging , 2015, Nature Medicine.

[20]  Peer Bork,et al.  Integrated Transcriptome and Proteome Analyses Reveal Organ-Specific Proteome Deterioration in Old Rats , 2015, Cell systems.

[21]  Piero Carninci,et al.  A draft network of ligand–receptor-mediated multicellular signalling in human , 2015, Nature Communications.

[22]  D. Foguel,et al.  A Metabolic Shift toward Pentose Phosphate Pathway Is Necessary for Amyloid Fibril- and Phorbol 12-Myristate 13-Acetate-induced Neutrophil Extracellular Trap (NET) Formation* , 2015, The Journal of Biological Chemistry.

[23]  Qianming Chen,et al.  Characterization of Nestin, a Selective Marker for Bone Marrow Derived Mesenchymal Stem Cells , 2015, Stem cells international.

[24]  Steven L Salzberg,et al.  HISAT: a fast spliced aligner with low memory requirements , 2015, Nature Methods.

[25]  G. von Heijne,et al.  Tissue-based map of the human proteome , 2015, Science.

[26]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[27]  T. Suda,et al.  Aging of the hematopoietic stem cells niche , 2014, International Journal of Hematology.

[28]  P. Frenette,et al.  Hematopoietic stem cell niche maintenance during homeostasis and regeneration , 2014, Nature Medicine.

[29]  Shuifang Zhu,et al.  Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads , 2014, BMC Bioinformatics.

[30]  B. Kuster,et al.  Mass-spectrometry-based draft of the human proteome , 2014, Nature.

[31]  Åsa K. Björklund,et al.  Full-length RNA-seq from single cells using Smart-seq2 , 2014, Nature Protocols.

[32]  I. Bruns,et al.  PDGFRα and CD51 mark human Nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion , 2013, The Journal of experimental medicine.

[33]  G. Daley,et al.  Stem cell metabolism in tissue development and aging , 2013, Development.

[34]  A. Sánchez-Aguilera,et al.  Self-renewing human bone marrow mesenspheres promote hematopoietic stem cell expansion. , 2013, Cell reports.

[35]  Wei Shi,et al.  featureCounts: an efficient general purpose program for assigning sequence reads to genomic features , 2013, Bioinform..

[36]  H. Geiger,et al.  The ageing haematopoietic stem cell compartment , 2013, Nature Reviews Immunology.

[37]  W. Shi,et al.  The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote , 2013, Nucleic acids research.

[38]  T. Tokunaga,et al.  B-box and SPRY domain containing protein (BSPRY) is associated with the maintenance of mouse embryonic stem cell pluripotency and early embryonic development. , 2012, The Journal of reproduction and development.

[39]  P. Pandolfi,et al.  A PML–PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance , 2012, Nature Medicine.

[40]  Gregory Stephanopoulos,et al.  Amplification of phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis , 2012, BMC Proceedings.

[41]  S. Nilsson,et al.  The location and cellular composition of the hemopoietic stem cell niche. , 2012, Cytotherapy.

[42]  S. Olthof,et al.  Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells , 2011, The Journal of experimental medicine.

[43]  Debashis Sahoo,et al.  Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age , 2011, Proceedings of the National Academy of Sciences.

[44]  Yaojiong Wu,et al.  Paracrine Molecules of Mesenchymal Stem Cells for Hematopoietic Stem Cell Niche , 2011, Bone marrow research.

[45]  D. Charron,et al.  Age‐related changes in human hematopoietic stem/progenitor cells , 2011, Aging cell.

[46]  Frank Lyko,et al.  Genome-wide promoter DNA methylation dynamics of human hematopoietic progenitor cells during differentiation and aging. , 2011, Blood.

[47]  M. Selbach,et al.  Global quantification of mammalian gene expression control , 2011, Nature.

[48]  A. Trumpp,et al.  The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in , 2011, The Journal of experimental medicine.

[49]  M. Merad,et al.  Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche , 2011, The Journal of experimental medicine.

[50]  J. Lévesque,et al.  Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. , 2010, Blood.

[51]  Ben D. MacArthur,et al.  Mesenchymal and haematopoietic stem cells form a unique bone marrow niche , 2010, Nature.

[52]  J. Dick,et al.  Revised map of the human progenitor hierarchy shows the origin of macrophages and dendritic cells in early lymphoid development , 2010, Nature Immunology.

[53]  Nathan C Boles,et al.  Distinct hematopoietic stem cell subtypes are differentially regulated by TGF-beta1. , 2010, Cell stem cell.

[54]  R. Wanders,et al.  A general introduction to the biochemistry of mitochondrial fatty acid β-oxidation , 2010, Journal of Inherited Metabolic Disease.

[55]  B. Korn,et al.  DNA methylation pattern changes upon long-term culture and aging of human mesenchymal stromal cells , 2010, Aging cell.

[56]  S. Orkin,et al.  DNA methyltransferase 1 is essential for and uniquely regulates hematopoietic stem and progenitor cells. , 2009, Cell stem cell.

[57]  Wolfgang Wagner,et al.  Aging and Replicative Senescence Have Related Effects on Human Stem and Progenitor Cells , 2009, PloS one.

[58]  L. Cantley,et al.  Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation , 2009, Science.

[59]  J. Radich,et al.  Decreased IRF8 expression found in aging hematopoietic progenitor/stem cells , 2009, Leukemia.

[60]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[61]  A. Ho,et al.  Aging of hematopoietic stem cells is regulated by the stem cell niche , 2008, Experimental Gerontology.

[62]  V. Beneš,et al.  Replicative Senescence of Mesenchymal Stem Cells: A Continuous and Organized Process , 2008, PloS one.

[63]  A. Ho,et al.  Molecular and Secretory Profiles of Human Mesenchymal Stromal Cells and Their Abilities to Maintain Primitive Hematopoietic Progenitors , 2007, Stem cells.

[64]  Richard van Wijk,et al.  The energy-less red blood cell is lost: erythrocyte enzyme abnormalities of glycolysis , 2005 .

[65]  G. van Zant,et al.  Effects of aging on the homing and engraftment of murine hematopoietic stem and progenitor cells. , 2005, Blood.

[66]  I. Weissman,et al.  Cell intrinsic alterations underlie hematopoietic stem cell aging. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[67]  Albert Jeltsch,et al.  The Dnmt1 DNA-(cytosine-C5)-methyltransferase Methylates DNA Processively with High Preference for Hemimethylated Target Sites* , 2004, Journal of Biological Chemistry.

[68]  G. Enikolopov,et al.  Nitric oxide is a regulator of hematopoietic stem cell activity. , 2004, Molecular therapy : the journal of the American Society of Gene Therapy.

[69]  D. Scadden,et al.  Osteoblastic cells regulate the haematopoietic stem cell niche , 2003, Nature.

[70]  John Eric Wilson Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function , 2003, Journal of Experimental Biology.

[71]  Andrew H. Thompson,et al.  Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. , 2003, Analytical chemistry.

[72]  L. Scott,et al.  Molecular pathways in bone marrow homing: dominant role of alpha(4)beta(1) over beta(2)-integrins and selectins. , 2001, Blood.

[73]  D. Schlessinger,et al.  Does functional depletion of stem cells drive aging? , 2001, Mechanisms of Ageing and Development.

[74]  H. Nakauchi,et al.  Age-Associated Characteristics of Murine Hematopoietic Stem Cells , 2000, The Journal of experimental medicine.

[75]  F. Offner,et al.  Bone marrow CD34+ cells generate fewer T cells in vitro with increasing age and following chemotherapy , 1999, British journal of haematology.

[76]  N. Iscove,et al.  Hematopoietic stem cells expand during serial transplantation in vivo without apparent exhaustion , 1997, Current Biology.

[77]  I. Weissman,et al.  The aging of hematopoietic stem cells , 1996, Nature Medicine.

[78]  R. Benesch,et al.  The effect of organic phosphates from the human erythrocyte on the allosteric properties of hemoglobin. , 1967, Biochemical and biophysical research communications.

[79]  F. Murad,et al.  Nitric oxide-cyclic GMP signaling in stem cell differentiation. , 2011, Free radical biology & medicine.

[80]  David W. Rowe,et al.  Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche , 2009, Nature.

[81]  D. Prockop,et al.  Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. , 2006, Cytotherapy.

[82]  Wouter W van Solinge,et al.  The energy-less red blood cell is lost: erythrocyte enzyme abnormalities of glycolysis. , 2005, Blood.

[83]  Rob J Hyndman,et al.  Computing and Graphing Highest Density Regions , 1996 .

[84]  R. Schofield The relationship between the spleen colony-forming cell and the haemopoietic stem cell. , 1978, Blood cells.

[85]  D. Defays,et al.  An Efficient Algorithm for a Complete Link Method , 1977, Comput. J..

[86]  and Aging of , 2022 .